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Abstract

Many multiagent systems require allocation of agents to tasks in order to en-

sure successful task execution. Most systems that perform this allocation assume

that the quantity of agents needed for a task is known beforehand. Coalition for-

mation approaches relax this assumption, allowing multiple agents to be dynamically

assigned. Unfortunately, many current approaches to coalition formation lack provi-

sions for uncertainty. This prevents application of coalition formation techniques to

complex domains, such as real-world robotic systems and agent domains where full

state knowledge is not available. Those that do handle uncertainty have no ability to

handle dynamic addition or removal of agents from the collective and they constrain

the environment to limit the sources of uncertainty. A modeling approach and algo-

rithm for coalition formation is presented that decreases the collective’s dependence

on knowing agent types. The agent modeling approach enforces stability, allows for

arbitrary expansion of the collective, and serves as a basis for calculation of individual

coalition payoffs. It explicitly captures uncertainty in agent type and allows uncer-

tainty in coalition value and agent cost, and no agent in the collective is required to

perfectly know another agents type. The modeling approach is incorporated into a two

part algorithm to generate, evaluate, and join stable coalitions for task execution. A

comparison with a prior approach designed to handle uncertainty in agent type shows

that the protocol not only provides greater flexibility, but also handles uncertainty on

a greater scale. Additional results show the application of the approach to real-world

robotics and demonstrate the algorithm’s scalability. This provides a framework well

suited to decentralized task allocation in general collectives.
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Coalition Formation under Uncertainty

I. Introduction

Multiagent and multirobot systems provide redundancy, robustness, and the

potential to perform more tasks than single agent and single robot systems

[33]. An aspect of moving to multiagent systems is an increase in complexity. In

particular, deciding which robot is going to fill which role for a given task, which is

the task allocation problem. Task allocation mechanisms in cooperative systems tend

to make one of two assumptions: tasks require only a single agent [17], or the number

of agents required for a task are known a priori [21]. Those that do not make these

assumptions can be classified in one of two ways: emergent or intentional. Emergent

approaches allow assigning of multiple agents to a task, but the task generally requires

a low degree of synchronization and the ability to assign agents at any point in the

execution of the task. Intentional approaches involve dynamic coalition formation.

Dynamic coalition formation reduces the constraints applied to a task and eliminates

the assumptions about a priori knowledge of the agents required for a task through

joining coalitions: subsets of agents formed to execute a task. This allows for greater

flexibility in the collective’s1 execution and assignment of tasks. Additionally, it

enables the collective to better respond to changes in its composition (i.e. the number

and types of agents in the system). Many artificial intelligence and game theory

researchers have performed work related to coalition formation [12,32]. Their research

has created stable allocation schemes and mechanisms for forming coalitions.

One largely unaddressed area in coalition formation research is that of uncer-

tainty [11]. This reduces the applicability of coalition formation to real-world systems,

since deterministically defining the real world is prohibitively expensive in terms of

processing and memory requirements. One way to bridge this representational gap

1A collective is defined as a collection of robots or agents, regardless of the coalition structure
they form
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is to use stochastic representations for the coalition formation related components.

These components have different effects on the end result of the coalition formation

process and the accuracy of the agents’ estimates of the coalition’s quality.

Other contributors to coalition formation are assumptions made either to employ

a specific stability concept or to simplify the math. Among these are transferable

utility and superadditivity. Transferable utility [30] is an assumption which improves

a coalition’s stability by allowing agents, players, or robots to transfer some currency

between themselves. This transfer is lossless, and reduces the utility (payoff from the

coalition) of one agent while increasing the utility of another. This functionality can

also be considered currency transfer to keep agents in a coalition. This helps enforce

stability, but is impractical for many real-world applications. Superadditivity [44] is

an assumption made to simplify the math. It defines a larger coalition as better than

a smaller coalition at all times. This serves to drive the coalition structure to only

the grand coalition, then the math is simplified since merely distribution needs to be

calculated.

One intent of the approach presented in this dissertation is to apply coalition

formation to military systems. Due to the potentially long-lived nature of military

systems, an approach to coalition formation that works for general, heterogeneous

systems is useful. Unfortunately, the application of coalition formation to these sys-

tems is difficult since coalition uncertainty is not well captured. The components

contributing to coalition uncertainty are the agent type (the physical construction

and motivations of agents), agent cost (the resource expenditure incurred during task

execution), coalition value (how well a coalition is expected to perform a task), and

sensor noise. Approaches that allow for uncertainty in dynamic coalition formation

are varied, and few capture the uncertainty explicitly. Vig and Adams [42] allow

uncertainty in sensor noise, but neither capture it nor allow for uncertainty from any

other source. Shehory and Kraus [35] allow uncertainty in agent type, but eliminate

this uncertainty by requesting agent types at the beginning of a negotiation. Soh and

Tsatsoulis [38] allow uncertainty from all sources, but assume that the agents in a

2



vicinity have full knowledge of each other. Chalkiadakis and Boutilier [11] allow for

and capture uncertainty in agent type, but do not allow for uncertainty from any other

source. This document presents an approach which improves upon the uncertainty

captured by these coalition formation mechanisms by:

• Incorporating both game theory and distributed artificial intelligence work to

provide a coalition formation algorithm that generates stable coalitions with

neither transferable utility nor the superadditivy assumption.

• Explicitly capturing the uncertainty in agent type, agent cost, and coalition

value through a unique agent model and evaluation algorithm.

• Providing an algorithm that solves for profitable and stable potential coalitions

for a given task in a decentralized manner. The agents then form the individually

most profitable stable coalition according to their local representation.

Traditional Coalition Formation Decision Processes (CFDPs) require knowledge

of coalition payoffs, the agents potentially involved in the coalition (including the

agent types), the coalition action or actions, agent costs, direct communication be-

tween agents, and that agents are members of only a single coalition. Unfortunately,

these requirements constrain the application of the CFDPs to very well-defined envi-

ronments. Additionally, there is no one common form of a CFDP that is applicable

to an unstructured environment.

The work presented here also provides a formalization of CFDPs for coalitions

with nontransferable utility designed to handle uncertainty. The formalization pro-

vides a more robust coalition formation mechanism for real-world robotic collectives,

leading to reliable task-oriented multirobot systems. The CFDP employs a unique

approach to generating and maintaining agent models and incorporating those models

into a novel evaluation mechanism to solve for stable coalitions. It enables removal

of many of the assumptions that have prevented more general applicability of coali-

tion formation mechanisms. The agent model is composed of a vector of abilities,

and these abilities provide insight into the suitability of an agent for a task. The

3



suitability (quality value) is used to determine an estimated agent and coalition cost

and evaluate the cost relative to the payoff of the task. This provides insight into

the overall estimated suitability of a coalition for a task. The approach also extends

multi-robot task allocation and dynamic coalition formation in a manner that allows

for dynamic changes in the environment, handles uncertainty, and permits dynamic

change in the collective’s composition. This allows for a heterogeneous composition

and arbitrary addition or removal of robots or agents from a collective. The approach

statistically provides results equivalent to other approaches in the face of uncertainty,

and because the design framework is more flexible, it can solve harder problems. Ad-

ditionally, the algorithm’s execution time is similar in scalability to other algorithms

for coalition formation.

1.1 Research Goal

The goal of this research is to formulate a CFDP in such a way that the rep-

resentation includes provisions for uncertainty. The sources of uncertainty to be

addressed include agent types, individual utility, and coalition value. The formation

process should also include mechanisms and processing techniques that provide stabil-

ity, scalability, and, at a minimum, optimality relative to agent beliefs. If these goals

are met, the result should be applicable to real-world systems since the representation

would allow for unstructured environments. The ensuing coalitions are stable based

upon a selected allocation scheme. Additionally, the stability of the coalitions that

are formed enforce a degree of robustness associated with any coalition action.

This research should also address the relationship between individual utility in a

heterogeneous coalition and coalition value. Given the effects of individual quality on

the value of a coalition, the payoff should be divided evenly according to the quality.

The relationship is dependent upon the individual quality, and the application of a

modified core for a rational payoff allocation based upon the relationship serves to

stabilize a coalition further.

4



Demonstration of fulfillment of this research goal is shown by examinations

of scalability, application to real-world robotic systems, and demonstration of the

developed CFDP procedure’s performance under uncertainty. The results in Chapters

IV through V describe the experimental setup, testing, and results which indicate each

of factors contributing to fulfillment of the research goal.

1.2 Sponsor

This research is part of the Intelligent Navigation and Sensing for Cooperative

Tasks (INSeCT) project sponsored by the Air Force Office of Scientific Research

(AFOSR). The associated autonomous navigation aspects for INSeCT include the

need for the agents to dynamically form coalitions for cooperative tasks.

1.3 Assumptions

The collective of robots under consideration is lightly loaded, such that the

processing time and resources needed to solve for stable coalitions are available on

demand. This removes from consideration computation sharing (or processor time)

as a currency for side payments.

The terms “transferable utility” and “side payments” are used interchangeably.

Some authors make a distinction (for example, Aumann [4]), where they allow trans-

ferring of currency among players (side payments), yet any transfer does not affect

the receiving player’s utility (transferable utility). For the functionality under consid-

eration here, the distinction between the two (i.e., side payments without transferable

utility) is rhetorical.

Little distinction between agents and robots are made. If the term robot is used,

it is generally assumed that it can apply to any embodied agent and that resources and

hardware are treated similarly. Agents are assumed to have the same characteristics.

If the term “disembodied agent” is used, it is treated as a purely software entity with

5



little or no analog to embodied agents or robots. Exceptions to this are noted where

appropriate.

The agents or robots in a collective have a common communication language.

The agents can communicate goals, state information, or coalition member-related

data as necessary. However, certain data may not have a representation understand-

able by a given agent. This makes solicitation of agent types more difficult, since an

agent may respond with an answer that the requester does not understand. In other

words, an agent may represent another agent incorrectly and can only improve upon

the representation through interaction with the other agent.

The agents or robots have a common task representation language. Under this

assumption, each agent knows exactly what a task is composed of in terms of roles

filled and any steps required to fulfill the task. Given this, the agent does not need to

know everything about an environment. It is assumed that environmental knowledge

(or lack thereof) does not affect the subtask sequence.

An abilities set can be reduced to a subset of abilities needed for task execution,

and the dependencies between the abilities are known. In other words, the relationship

of each ability to other abilities are known, and the task is processed such that the

abilities required for each subtask can be generated.

1.4 Organization

This dissertation presents an improvement to previous approaches to coalition

formation mechanisms with uncertainty. It provides an analysis of game theory, dis-

tributed artificial intelligence, and cooperative robotics work to illustrate the demand

for more flexible and robust dynamic coalition formation methods. One method, in-

cluding a formalized Coalition Formation Decision Process (CFDP) is presented in

Chapter III. This is followed by the results of applying the approach to a simu-

lated robot collective with variations in the agents’ model accuracy and the collective

size. The application of the approach to a real-world robotic collective is presented in

6



Chapter VI. Chapter V provides a comparison of the approach to another dynamic

coalition formation approach designed to handle uncertainty. Appendices A and B

provide a proof that the approach is immune to deadlock and an exploration of the

agent model improvement approach (the modified Kalman filter), respectively.
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II. Coalition Formation in Current Literature

Coalition formation is a popular area of research in cooperative game theory and

artificial intelligence. The first direct address of cooperative game theory is in

von Neumann and Morgenstern’s book, Theory of Games and Economic Behavior [44].

They present and defend the concept of utility as a means to assign a value to a

player1 in a game. The primary focus of their work was on zero-sum games, games

in which a gain for one player has an equal loss for its opponent. However, it is

often advantageous to form a cooperative group to improve effectiveness by sharing

workload and profit. This is the motivation for coalition formation research.

The research related to coalition formation can be broken into two areas: game

theory and distributed artificial intelligence (DAI). Game theory coalition formation

research focuses on coalition stability. This includes determination of rational allo-

cations within a coalition and solving for stable coalitions. Very little effort is put

into tractability and mechanisms, as these are the primary focus of the DAI aspects

of coalition formation. An introduction to game theory coalition formation is covered

in this document to provide a basis from which to present the DAI aspects that are

used to create the final framework presented in Chapter III.

2.1 Game Theory

Some of the earliest work on stable allocation schemes was performed by Edge-

worth [18], via a concept called the contract curve. This defines a line along which

there exists an equilibrium between multiple parties. This was formalized into the

modern understanding of the core by Gillies [23]. The core is the set of imputations

(efficient and rational distributions) that cannot be improved upon by a coalition.

The result is a rational2 allocation of the profit for the coalition. A “coalitional form

game” ν is defined as a function ν : 2N → R, where N = 1, 2, ..., n is the set of all

players (assumed finite). In mathematical terms, the core is where no coalition has a

1A player can be defined as any decision maker in a game, regardless of whether that player is
human, computer, environment, etc.

2The term “rational” is used here since “fair” implies a subjective view of the allocation.
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value greater than the sum of its members’ payoffs:

C(ν) =

{
x ∈ RN :

∑
i∈N

xi = ν(N);
∑
i∈S

xi ≥ ν(S),∀ S ⊆ N

}

where N is the set of all players, ν(S) is the value of coalition S ⊆ N , xi is a payoff for

player i, and x is the set of payoffs in the grand coalition that cover all players. This

equation states that given any set of payoffs in the grand coalition, the sum of payoffs

for each player is equal to the total payoff for the grand coalition and the payoff for

each agent in the grand coalition is greater than or equal to what the player would

receive in any other coalition. In other words, the core is the set of payoffs that the

players cannot individually improve upon. The mechanisms underlying the core is

best illustrated by an example. Consider 10 producers of item A and 11 producers

of item B. The items are sold as a set AB, for a profit of $10. A simple distribution

of profit would be to split it evenly within each coalition of two producers. The core,

however, considers the profit distribution based upon the ability to improve upon the

current distribution. One of the item A producers can negotiate a better profit with

the unpartnered producer of item B. A takes $6, B takes $4. This is an improvement

over the previous coalition for both. However, this leaves the previous producer of

type B with 0 profit since it is now unpartnered and cannot sell its item. It can

improve its profit partnering with some other producer of A, which also improves its

profit since it can increase its profit to 6 or higher by this coalition. This process

would continue until all producers of A take all the profit and all producers of B take

no profit. This cannot be improved upon by A nor B producers: the producers of

A have improved their profit as far as possible, and the producers of B are doing no

worse than they would if they were unpartnered. According to the core, the set of

formed coalitions converges to this allocation. The core is very sensitive to oversupply,

as indicated by this example. It is, however, rational and stable. The core does

not guarantee optimality, if optimality is defined as the set of the most profitable

coalitions. It does, however, guarantee an individually most profitable coalition. A
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coalition formed for a specific task may be core-stable without being optimal, but

the individual players in the core-stable coalition have achieved the best profit they

can achieve. In a decentralized system with full environment knowledge, this is the

full extent of the guarantees that an allocation method can make, regardless. Given

this, some guarantees are available for k-optimality [8]. In essence, the core is a

greedy, Nash-game style of allocation which enforces that the players are making the

best decisions for themselves, not the entire system. The core is then well-suited to

domains where the players may not act in a fully cooperative manner.

An allocation scheme not so sensitive to oversupply is the Shapley Value [44].

Consider a game v with a finite set of players N = {1, 2, 3, ..., n}. The total payoff of a

coalition S ⊆ N is ν(S). The value is an operator φ which assigns a vector of payoffs

to each game ν, where φi represents i’s payoff in the game. Under the assumption

that ν(∅) = 0, player i’s payoff in the game is:

φi(ν) =
1

n!

∑
π∈Π

[ν(pi
π ∪ i)− ν(pi

π)]

with pi
π as the set of players, π ∈ N preceding player i in the order Π on S. The

Shapley Value satisfies four axioms:

1. Efficiency:
∑

i∈N φi(ν) = ν(N). In other words, the resources available to the

grand coalition are distributed among the players.

2. Symmetry: If any two players make the same marginal contribution to the

coalition, both players have the same value.

3. Dummy: if player i is a dummy player, i.e., it makes no marginal contribution

to the coalition, then φi(ν) = 0.

4. Additivity: the value is additive: φ(ν+w) = φ(ν)+φ(w) where the game (ν+w)

is defined by (ν + w)(S) = ν(S) + w(S) for all S.
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An example of an application of the Shapley value is with two players. Define ν(1) = 1,

ν(2) = 3, and ν(12) = 6. Then the payoff for player 1 is

1

2
· (ν(1) + ν(12)− ν(∅)− ν(2)) =

1

2
· (1 + 6− 0− 3) = 2,

and for player 2, the payoff is

1

2
· (ν(2) + ν(12)− ν(∅)− ν(1)) =

1

2
· (3 + 6− 0− 1) = 4.

Note the satisfaction of the efficiency, symmetry, dummy, and additivity axioms.

There are two issues regarding the applicability of the Shapley Value to general

coalition formation scenarios. The first is the superadditivity assumption, ν(S∪T ) ≥
nu(S) + ν(T ) for all coalitions S and T such that T ⊆ N and S ∩ T = ∅. This im-

plies that for any game, the best coalition is the grand coalition. Unfortunately, for

real-world systems, as the profit is divided among participants, the highest profit for

each player is often captured in a coalition smaller than the grand coalition. This is

because coalition formation in real-world systems is not always fully cooperative. The

second issue comes from both the dummy and symmetry axiom. Under uncertainty,

it is difficult to determine the specific contributions made by a specific player. Declar-

ing a player a dummy may limit the player’s desire to participate in future coalitions,

even if the contribution in those coalitions is significant. Additionally, any uncer-

tainty associated with the player types limits the system’s ability to reason about the

marginal contributions of those players.

A third allocation scheme is the kernel [16]. The kernel is based upon bargaining

power: the possible gains that a specific player can have by withdrawing from a

specific coalition. The maximum surplus s (the maximum possible gain of a player

by withdrawing from a coalition) for the game ν of player i over player j is

sν
ij(x) = max

{
ν(S)−

∑

k∈S

xk : S ⊆ N \ {j}, i ∈ S

}
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the kernel is the imputation set that satisfies

(sν
ij(x)− sν

ji(x))(xj − ν(j)) ≤ 0

and

(sν
ji(x)− sν

ij(x))(xi − ν(i)) ≤ 0

where xi and xj are payoffs for players i and j, respectively. As an example, consider

a 3-person game with ν({1, 2}) = 90, ν({1, 3}) = 80, ν({2, 3}) = 70 and ν(N) =

105 [15]. Assume that players 1 and 3 have agreed in principle to a coalition with

configuration

(x; S) = (45, 0, 35; {1, 3}, {2})

where x is the payoff vector and S is the coalition structure. Here, the coalition {1 3}
has agreed to a payoff of 45 to 1, 0 to 2, and 35 to 3. Coalitions {1} and {1 2}
are coalitions that include 1 but exclude 3, so the value of these are determined in

order to find s13. ν({1}) − x1 = 0 − 45 = −45. The value of coalition {1} is 0 and

the payoff of player 1 in the current coalition structure is 45. The value for coalition

{1 2} is ν({1 2}) − (x1 + x2) = 90 − 45 − 0 = 45. Thus, the maximum surplus of

player 1 over player 3 is 45. Likewise, s31 = 35. Therefore, (s13 − s31)(x3 − ν(1)) =

(45 − 35)(35 − 0) = 350 > 0, so this imputation is not in the kernel. The inequality

(sν
ji(x) − sν

ij(x))(xi − ν(i)) ≤ 0 need not be calculated. The primary advantage of

the kernel is that it does not require superadditivity. Unfortunately, it also requires

that all coalitions with a single member have a value of 0 for most applications. This

approach allows for uncertainty in the most straightforward manner, since it reduces

the uncertainty to coalition values only. Additionally, the time for computing an

optimal coalition under these constraints is O(NN) [34], once the kernel is found,

which itself takes exponential time [7]. The O(NN) time is based upon the total

number of coalition structures:
N∑

i=1

Z(N, i)
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where Z(N, 1) is the number of coalition structures with i coalitions and Z(a, i) =

iZ(a − 1, i) + Z(a − 1, i − 1) [34]. This leads to the nn runtime for determining

the coalitions. For each of these, the kernel is determined, making for significant

calculations. This is impractical for most applications of coalition formation due to

these time constraints.

2.2 Uncertainty in CFDPs

Coalition formation decision processes (CFDPs) are traditionally assembled

with assumed knowledge of coalition value, agent types in the coalition, the coalition

action, and agent costs. The usefulness of traditional CFDPs is therefore constrained

to well-defined environments. In real-world robotic systems, the environment is often

poorly defined, preventing application of CFDPs to the system. One way to bridge

this representational gap is to use stochastic representations for the CFDP-related

components. The remainder of this section is broken up according to the type of un-

certainty: agent type, agent cost, or coalition value. Section 2.2.1 presents previous

work related to uncertainty of agent types. Section 2.2.2 discusses agent cost uncer-

tainty. A discussion of work related to uncertainty in coalitional value is provided,

as well as the relationship between each of the three sources of uncertainty. The

relationship is cyclic, as one source of uncertainty can lead to uncertainty in other

sources. Furthermore, feedback on the cycle can improve uncertainty over repeated

formation attempts. These relationships are shown in Figure 2.2.

2.2.1 Agent Type Uncertainty. Agent type is a key factor in determining

the quality of a potential coalition. Agent type describes an agent’s abilities and

motivations, allowing for reasoning about the contributions of the agent to a potential

coalition. Unknown agent types inhibit the quality of the coalition value and agent

cost estimates, as the three are mutually dependent. Stability3 of a coalition can still

3Stability is defined as whether a coalition will remain in existence. A coalition that may dissolve
is unstable, one that may not is stable.
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Figure 2.1: AND/OR graph showing dependencies in coali-
tion formation processes. The darker boxes are sources of un-
certainty. The arrows indicate the direction of the dependency.
Dashed lines indicate temporal values, fed in at the beginning
or end of the formation cycle. The quality value input and exe-
cution result feedback are unique to the algorithm presented in
this paper.

be guaranteed based upon agent estimates: if the agents form a coalition and expect

that it is the best according to some stability criterion, the coalition is stable. This is

the full extent of the available guarantees under uncertainty, and one that is discussed

later in this section. The work related to uncertainty in agent types presented in this

section assumes that either the agent type information can be obtained or learned,

which drives the coalition formation mechanisms to an approach where estimates

define the agent types and, thereby, the underlying stability.

Shehory and Krauss [35] provide a mechanism that does not explicitly require a

priori information about the agent types, but solicits this information from the other

agents during a CFDP. Their work assumes transferable utility (a concept discussed

in depth in Section 2.2.2), which is infeasible for many real-world robotic systems.

The environment for which their mechanism is designed does not have the property of

superadditivity, which coincides with the environmental view of a real-world robotic

collective. Based upon the non-superadditivity assumption, the grand coalition is not
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necessarily the most beneficial. The property of superadditivity is central to the use

of the Shapley Value, so their framework is only applicable to the core or the kernel.

Their assumptions allow a coalition to focus on a common task, since each coalition

can work on only one task at a time. An agent may execute multiple simultaneous

tasks by joining multiple coalitions. Shehory and Krauss apply an algorithm to solve

for all possible coalitions and perform a greedy selection of the preferred coalitions

to determine the best coalition structuring. The resulting coalition structure is not

guaranteed optimal due to the greedy selection strategy, though guarantees can be

made regarding k-optimality [8]. Once the agent type information is solicited, there

is no further uncertainty in agent type. Given this information and the knowledge

of agent costs and coalition value, the uncertainty is not incorporated into the algo-

rithm directly. A problem with this representation is if an agent is of a type that

another agent cannot accurately represent. Dynamic changes in the composition and

increased heterogeneity in the collective require reprogramming of all of the agents in

the collective.

Chalkiadakis and Boutilier [11] fully incorporate uncertainty in agent type, as-

suming that neither the solicitation of agent types nor prior knowledge exist. Instead,

the agents learn the types of the other agents by repeated coalition formation. The

uncertainty in agent types is directly addressed by their work, though the set of

possible agent types is known. The most significant contribution of their work is the

Bayesian core stability concept. The agents are required to determine coalitions based

upon their individual beliefs. This does not guarantee that a coalition is formed. In

fact, the Bayesian core may be empty even when the core (if all types are known)

is nonempty, since the beliefs might not reflect reality. If the beliefs are sufficiently

inaccurate relative to the true values, a poor coalition may form. The Bayesian core

reflects this, since it is built upon beliefs. Let N = {1, 2, ..., n} be the set of agents

in the collective. Agent i’s beliefs about agent j’s expected payoff if j is a member of

any coalition S ⊆ N with coalition demand vector (the relative payoff demands for
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the coalition) ~dS taking coalition action α is

p−i
j,S(α, ~dS) =

djQi(S, α)∑
k∈S dk

where Qi(S, α) is the expectation of the value of action α taken by coalition S. This

equation relates the demand dj, and expectation of action values for coalition S taking

action α, Qi(S, α) (Q-value), to the total demand of the coalition members,
∑

k∈S dk.

Thus, with a high Q-value, low total demand, and high demand for j, i believes j

would expect higher payoff from coalition S.

By this definition, a coalition structure CS with demand vector ~d is in the

Bayesian core (BC) if and only if all coalitions in the structure have an action such

that there is no alternative coalition that has an action with expected higher payoff.

In mathematical terms,

〈CS, ~d〉 ∈ BC iff ∀S ∈ CS ∃α ∈ AS s.t. ∀C ⊆ N

@β ∈ AC and ~dC s.t. p−i
i,C(β, ~dC) > p−i

i,S(α, ~d),∀i ∈ C

This definition is separated into Bayesian cores of differing strength values in

[14]. There, the weak Bayesian core, the strict Bayesian core, and the strong Bayesian

core are defined. The weak Bayesian core is when there is no coalition in a coalition

structure where all members believe that they can be personally better off. If there is

a member who proposes an alternate coalition allocation that requires all members to

change some aspect of their allocation, even one member responding that they can’t

be any better off than they currently are (in expectation) restricts the coalition to the

current structure. This is still in the Bayesian core and stable, but readily becomes

unstable when, for example, there is only one agent that disagrees with the alternate

allocation, but then changes its mind.

The strict Bayesian core, a subset of the weak Bayesian core, is where there is no

agent in a coalition who believes that an agreement that makes it better off without
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hurting the other members of the coalition exists. In other words, if there is one agent

who believes it can do better but has to do so at the expense of the other agents, the

alternative agreement does not occur. This perspective is from an omniscient point

of view: the determination of the hurt to j is true harm to j, not an estimate from i.

The strong Bayesian core takes the strict Bayesian core a bit further, assessing

beliefs about the other agents. The strong Bayesian core is where there is no agent in a

coalition who believes that an agreement that makes it better off without expecting to

hurt the other members of the coalition exists. The subtle difference between this and

the strict Bayesian core is that the determination of the hurt to the other members of

the coalition from agent i’s perspective is based upon i’s estimation of the payoff for

player j, instead of player j’s estimation of its own payoff. In other words, if there is

one agent who believes it can do better but has to do so with an expectation that it

would be at the expense of the other agents, the alternative agreement will not occur.

Chalkiadakis and Boutilier expand upon a means to address this uncertainty [13]

using repeated coalition formation to apply reinforcement learning in a more concrete

sense than in [11] to learn the agent types. The drawbacks of the framework they

present are threefold:

1. The true agent types might not match one of the predefined agent types.

2. The agent types, even if known, may not be enough to determine the cost

associated with the agent and, in turn, the coalition value.

3. The application to real-world robotics is limited due to the underlying assump-

tion of transferable utility with the agents.

The work they present does directly address uncertainty with agent type, however,

and is useful as a basis for incorporation of other sources of uncertainty. Agent type

is the first source of uncertainty encountered, and since it is used in part to calculate

the agent costs and coalition values, can contribute the most to the formation of

poor coalitions if not well addressed. It is also the most straightforward to handle,
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since agent type is independent of the environment. Agent cost, however, is not as

straightforward. It is discussed in the next subsection.

2.2.2 Agent Cost Uncertainty. The costs of each agent directly determine

the quality of the agent in a coalition. Individual quality may have some uncertainty

associated with it, and the approaches to addressing it are limited in their applica-

bility. In many Game Theory examples, the existence of Transferable Utility (TU)

is assumed. TU exists in scenarios where there is some common currency that is

suitable to make side payments within a coalition [25]. This is impractical for many

situations, since the currency may be nontransferable. A real-world mobile robotic

collective would not have TU, since the common currency, be it energy, hardware,

or processing time4, is not transferable. This is not to say that social rules could

not be applied. If a means is in place to enforce social rules on transferable utility,

these transfers can be made later. However, most practical and robust systems avoid

application of rules in this way. These and other similar situations have Nontrans-

ferable Utility (NTU). A coalition with NTU is often less stable than one with TU.

In NTU coalitions, the appropriate characterization of each individual agent’s quality

is of crucial importance. For example, an agent with very low quality in a coalition

that expects high payoff is of little worth to the coalition and may end up costing the

coalition, rather than contributing to it. This is handled readily in TU scenarios, but

increases complexity in NTU scenarios. The individual quality is critical to capture

in order to allow for reasoning on the coalition under consideration.

Kargin [29] presents uncertainty as it pertains to agent costs in a Shapley Value

stability concept application. The Shapley value has a superadditivity assumption,

which implies that the most valuable coalition is one with all agents involved (or one

where agents can at least guarantee their value). The determination of the marginal

contribution of each agent serves to define the distribution of coalition rewards to the

4We assume the robots are lightly loaded, i.e. the processing time and resources needed to solve
for stable coalitions are available to each individual on demand.
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coalition. The uncertainty Kargin presents is that of an agent in a random coalition.

Let fi : X → 2(N−{i}) be a random variable with its values in the set of subsets of

N −{i}. Define the marginal contribution of player i as diG. Then the Shapley value

Vi of game G for player i is the expectation E(·) of the form

Vi(G) = E[diG ◦ fi]

which is the expectation of player i’s marginal contribution when the coalition is

chosen randomly. The Shapley uncertainty Ri for player i of this game is the variance

Var(·) of the form

Ri(G) = Var[diG ◦ fi]

which is the variance of the marginal contribution of player i to the game. This

uncertainty is applicable to games where the marginal contribution to the grand

coalition game is known. In other words, the agent cost (higher cost implies lower

utility and vice versa) for the grand coalition is known, and the agent cost for a given

coalition is known (or is readily determined). The agent cost for a random coalition is

characterized by the uncertainty of the Shapley value, meaning that once a coalition

is realized, the uncertainty is irrelevant. The mechanism provided here by Kargin

serves to provide a means to characterize the value of an agent to a random coalition

when the agent’s value in the grand coalition is known. This provides insight into

how to characterize the contribution when it’s not known, but this work by Kargin is

incomplete in terms of fully capturing the uncertainty in agent utility. Kargin’s work

serves to indicate uncertainty in a randomly chosen coalition when the agent qualities

are fully known.

Uncertainty in agent cost is largely unaddressed, as the assumption of trans-

ferable utility serves to improve stability by “forcing” a cost onto each agent in a

coalition. The transferable utility assumption also makes any formed coalitions more

stable. Unfortunately, the application of transferable utility to real-world robotics in

terms of coalition formation is limited, and, from the arguments presented above, not
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applicable to the domain. In fact, the assumption of TU has been called “exceedingly

restrictive–for many purposes it renders n-person theory next to useless” [30]. Directly

addressing this uncertainty provides some insight into the uncertainty in both agent

type and the overall value of the coalition. The next subsection discusses uncertainty

in the coalition value and presents an approach to addressing it.

2.2.3 Coalition Value Uncertainty. In addition to individual quality, a

source of uncertainty is the value of a coalition. The payoff associated with a coalition

may be known, but given a number of potential coalitions that can perform the

associated task, the value of each coalition determines its suitability for the task. This

is best illustrated by an example: movers are paid a set amount to relocate a piano.

For the sake of simplicity, assume payment is divided evenly among the participants

in the move (i.e., each mover has the same utility or cost). The movers must maximize

individual payoff along with minimizing expense. Assume that it takes a minimum

of two movers to relocate the piano. Assuming equal capability of each mover, the

optimal coalition size is two: it maximizes profit while avoiding unnecessary expense

in attempts with a singleton coalition and overallocation with the grand coalition. In

this example, the value of any possible coalition is known. If the example is modified

such that it is not known how many movers it takes to relocate the piano, the coalition

value becomes uncertain. The coalition payoff is known, but the costs and payoff for

each mover is unknown, thus establishing an unknown coalition value. The unknown

coalition value creates an additional source of uncertainty, which must be reasoned

about. Note that, if the movers are not equal in capability, individual utility dictates

the coalition value and the division of the payoffs. This relationship is important,

as it may cause instability. This instability is normally addressed by TU in other

coalition formation work.

Blankenburg et al. [7] present a coalition formation technique based upon the

kernel stability concept that incorporates uncertainty in the coalition value. The ker-

nel is based upon the coalition values alone. If the values of all potential coalitions
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are known, the kernel provides a stable and rational allocation. Even if the values of

the potential coalitions are uncertain, they are characterized and captured by fuzzy

sets in Blankenburg’s work. The fuzzy sets are applied as membership functions to

determine the maximum fuzzy excesses of a given agent over another agent. This

is used, in conjunction with a fuzzy ranking operator value and fuzzy similarity re-

lation, to determine the bargaining power one agent has over another. The kernel

stability concept is applied to the bargaining power determination to form stable

coalitions. Blankenburg’s work is useful in that the assumption of transferable utility

is not implied. The fuzzy set approach implies that some a priori knowledge is avail-

able that indicates a membership in a small number of possible maximum surpluses.

Additionally, the kernel is solely concerned with coalition value. The contributing

factors, agent cost and agent type, affect the coalition value and is not captured by

Blankenburg’s work. The relationship between these factors is discussed in the next

subsection.

2.2.4 Relationship Between Uncertainty Sources. The kernel, core, and

Shapley value each have different required knowledge. For example, the kernel is

only concerned with coalition value, and the core and Shapley value are based upon

agent quality. If full knowledge of the information required by each stability concept

is present, the uncertainty in the other sources need not be captured. Conversely,

full knowledge of the information not required by the stability concepts provides only

minimal insight into the information they require. Unfortunately, the three sources

of uncertainty are related. If the agent type is unknown, the value of the agent to

the coalition is unknown, in turn making the coalition value unknown. Thus, each

stability concept is dependent upon all three uncertainty sources, though some of

the dependence is indirect. An aspect of the three sources of uncertainty is that

knowledge of one does not necessarily imply knowledge of the others. Chalkiadikis

and Boutilier [11] use agent type uncertainty to determine the core. Unfortunately, the

agent type and agent utility are not as closely related in real-world applications as their
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approach implies. Knowledge of the agent type provides little insight into the agent

cost and coalition value since environmental factors may be unknown. Conversely,

knowledge of agent costs for all agents in the coalition implies knowledge of the

coalition value. Failing to know the cost of even one agent in the coalition prevents

knowledge of the coalition value, in turn making the computation more difficult since

that agent’s influence is unknown [2].

As an alternative to handling uncertainty, it can be deflected, choosing instead

to indirectly address the unknowns. Soh and Tsatsoulis [38] provide a representation

that allows for uncertainty with some agents, but requires adequate a priori knowl-

edge of the agents in a neighborhood. This reduces the complexity of the calculation

to the well-understood neighborhood. There is not, however, uncertainty associated

with the agents in the neighborhood, thus, on this neighborhood, the CFDP is free

from uncertainty. One benefit of their work is that it allows for membership of one

agent in multiple coalitions simultaneously. Additionally, their work incorporates the

potential for communication failure during CFDPs. The coalition formation mecha-

nism they present relies heavily upon negotiation, maintaining and managing multiple

negotiation threads. There are three key aspects to the negotiation: choosing whether

to negotiate, available negotiation threads, and availablility of communication chan-

nels. A prevention of any of these three aspects causes a failure of the coalition

formation. This mechanism in practice was only successful 20% of the time. The

advantage of their work is that it provides reasoning and decision making based upon

beliefs: the knowledge of the other agents in a neighborhood creates beliefs about

those outside the neighborhood. The intended application for their work is a sta-

tionary multisensor network, so those sensors that are in a neighborhood are most

likely to see the same data and most likely to benefit from forming a coalition. Those

outside the neighborhood are less likely to see the same data, thus forming a belief

about the other agents. The full knowledge of the other agents in a neighborhood,

however, limits the applicability of this mechanism to a more uncertain collective.
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Table 2.1: Comparison of the uncertainty sources handled (agent type, agent cost,
coalition cost), transferable utility vs. nontransferable utility, and valid allocation
schemes for the works reviewed in this section.

Uncertainty
Author Agent Type Agent Cost Coalition Cost TU/NTU Schemes
Shehory [35] solicit no no TU core, kernel
Chalkiadakis [14] yes no by proxy TU core
Kargin [29] no yes no TU Shapley Value
Blankenburg [7] no no yes TU/NTU kernel
Soh [38] no no no TU kernel
Vig [42] no no yes TU kernel

Vig and Adams [42] make use of the algorithm from Shehory and Krauss [35] in

a multi-robot setting to form coalitions. The uncertainty in their approach is limited,

however, and not directly addressed. Sensor noise and communication failure is com-

mon to all real-world robotic systems and creates a degree of uncertainty associated

with the robot’s internal state estimate. However, the types and capabilities are as-

sumed to be known a priori in their work. This may be a valid assumption for static

robotic collectives where the coalitions are a subset of the collective, but collectives

that allow for the addition of new (previously unencountered) robot types cannot use

this assumption. They provide an optimization of the greedy algorithm which deter-

mines the lopsidedness of a coalition. Their approach considers the contributions of

each potential member of the coalition and attempts to equalize them. They posit

that one coalition with large contribution from a single member is more likely to fail,

since the single, highly capable member enables a single point of failure. This ap-

proach also does not consider the cost of forming a coalition, nor does it attempt to

minimize the number of members in a coalition. This makes a more stable coalition

structure, but reduces the individual payoff in the formed coalitions.

Table 2.1 shows a comparison of the approaches from each of the items reviewed

in this section. With the exception of Blankenburg et al., which makes no assump-

tion, the commonality of these approaches is that they all assume transferable utility.

There are some approaches that are designed to handle coalitions that cannot make
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sidepayments, i.e., they have nontransferable utility. This is discussed in the next

section.

2.3 Coalition Formation with Nontransferable Utility

The previous section discussed general coalition formation mechanisms and ways

of incorporating uncertainty into them. Unfortunately, the mechanisms that were

presented were only defined for situations that require the existence of transferable

utility. The application of coalition formation to real-world collectives is limited

because NTU is very common in these collectives. This section provides a discussion

of mechanisms for coalition formation in collectives that have NTU.

The relationship between TU and side payments is subtle, but distinctive for

certain applications. Non-cooperative games contain cooperative games as a subset,

and cooperative games without side payments include cooperative games with side

payments as a subset (in other words, any solution method used to solve cooperative

games without side payments is applicable to cooperative games with side payments).

Transferable utility is a special case of cooperative games with side payments [5].

Whenever the games are addressed directly, the authors rarely make it a point to

draw a distinction between cooperative games with neither side payments nor TU

and cooperative games with side payments but without TU. Those that do directly

address the distinction normally apply their work to the former, since it is more

general. Due to the applicability of the results to games with side payments, this

is the assumption applied here. In fact, transferable utility and side payments are

assumed here to be the same thing, since normally the assumption of the presence of

one implies the presence of the other.

Tohmé and Sandholm [40] present coalition formation processes in a setting with

self-interested agents. These agents are boundedly rational. In order to establish an

appropriate framework for the game at hand, the α-assumption is used. This assumes

that all nonmembers of a coalition make decisions that are the worst for the coalition

under consideration. This pessimistic view enables a “worst case” coalition to be
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formed. This worst case coalition structure is called the α-core, which is the stable

coalition structure formed under the α-assumption. Given that the agents are self-

interested and the coalitions are making the worst possible decisions for each other,

the game is naturally reformed into a Nash-style game. In other words, the Nash

game defined here answers the question, “given this worst case strategy of the other

coalition, what is my coalition’s best strategy?”. Additionally, since the core is the

stability concept applied, the agents have a Nash game between individuals. Tohmé

and Sandholm assume superadditivity, so, though their framework does allow for

the removal of the TU assumption, the superadditivity assumption removes much

of the processing associated with determining the coalition structure. The optimal

coalition structure is the grand coalition according to this assumption, so the ideas of

multiple coalitions and agent membership in multiple coalitions is not addressed. The

stability of the coalition is also not addressed due to the superadditivity assumption.

The framework they present allows for different actions within a coalition, so the

Nash game is defined traditionally: an agent determines its optimal actions after

evaluating the possible actions of the other agents. After the action is performed, it

revises its beliefs about the actions of the other agents in order to better estimate

the future actions of others. Their approach indicates the Pareto-optimality of their

utility profile: to improve individual utility, the utility of another agent must be

reduced. This is useful to note, as it still has the underlying properties of a common

currency. For real-world robotic systems, these utilities are static (though unknown

or uncertain). Tohmé and Sandholm’s solution draws heavily on the α-core and the α-

assumption. These were presented by Aumann and drawn upon in some of Aumann’s

own work [4].

Aumann provides a survey of cooperative games without side payments in [5].

He clarifies the definition of the characteristic function, which is a simple represen-

tation of a game. The characteristic function gives the set of payoff vectors for each

coalition that the coalition can assure its players. One can define a game using the

characteristic function as a pair (v,H) where v(S) is the set of payoffs that a coali-
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tion S can assure itself (the characteristic function) and H is the set of outcomes

that can occur5. He describes three conditions for this definition. The first condition

is that the characteristic function is closed, convex, and non-empty. This condition

holds intuitively: players can mix their strategies (convexity), the vectors in the set

are attainable (closedness), and the coalition S is only formed if there is some pay-

off associated with it (non-emptiness). The second condition he applies is that if a

coalition can assure itself a given payoff vector, it can also assure itself anything less.

The third condition he applies is superadditivity. This condition, as discussed before,

is not necessarily valid for real-world robots. However, this is a minor inconvenience

since sidepayments are not allowed in Aumann’s work. It is trivial, by comparison, to

remove the superadditivity assumption instead of removing the TU assumption. He

presents a proof that applying group rationality to the outcomes does not change the

core, therefore, all “interesting” cores are equal. Thus, there is one core for any col-

lective, regardless of the existence of TU. This makes much of the processing related

to the core more straightforward, since there is a guarantee of only one core. This

proof is presented in more detail in [4]. Aumann’s work, coupled with a Bayesian core

stability concept, provides a foundation from which additional uncertainty can be

incorporated in a framework well suited to real-world robotic collectives. The intro-

duction of uncertainty from all three sources, along with a formalization of CFDPs,

forms the cornerstone of the research associated presented here. The uncertainty

introduction and formalization methods are presented in the next chapter.

2.4 Coalition Formation Decision Processes

The distributed artificial intelligence (DAI) side of coalition formation focuses

on the procedural aspects of coalition formation. It is concerned more with creating

efficient and stable decision processes related to forming coalitions than the coali-

tions themselves. Algorithms for forming coalitions in polynomial time using greedy

algorithms, ontology-based approaches, or reinforcement learning are applied by re-

5One often assumes that H = v(S), which is a valid assumption for the real-world robotic domain.
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searchers in DAI to generate coalitions that are “good enough”, since finding the

absolute best possible coalition structure takes O(NN) time [35].

Shehory and Krauss [35] provide a greedy algorithm for forming coalitions. Their

algorithm is distributed in that every agent in the collective simultaneously computes

the coalitions. This is iterative:

1. Given knowledge of capabilities of each robot, for each task t ∈ T where T is

the set of all tasks,

-compute the task values in the precedence set Pt.

-If all tasks in Pt are assigned coalitions, set the value of all the tasks pVt

to the sum of the values of the tasks in Pt.

-Otherwise, remove task t from T , since it cannot be performed.

2. Choose the task t∗ with the maximum pVt to be performed with its predecessors.

3. Remove t∗ and its predecessors from T .

4. Update capability vectors of the associated members.

If a task t has predecessors, it implies a required ordering upon task execution, re-

quiring completion of other tasks prior to executing t. Given this flow of information

regarding the task, additional calculations are needed to determine the coalitions.

Each agent Ai commits to calculating a subset of coalitions involving itself, commu-

nicating to extract capabilities and building a long-term commitment list Li. Each

agent Ai executes the algorithm to form a coalition as follows:

1. Locate in Li the coalition Cj with the smallest cost cj.

2. Announce this cost to all other agents.

3. Choose the lowest cost of all those that were announced. The corresponding

coalition Clow and task tlow are also selected.

4. Ai joins the coalition Clow if it is a member of it.
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5. Erase the task tlow from T corresponding to Clow.

6. Update capability vectors of all members of Clow according to contribution to

the task.

7. Assign to Lcr
i the coalitions in Li that need recalculations due to the members

of Clow having changed their capabilities.

A variation where the agents that join a coalition are removed from further calcula-

tions until the coalition dissolves (upon task completion) is also presented. The total

procedure has a computational complexity of O(nk · |T |5), where n is the number of

agents, k is the maximum size of a coalition, and |T | is the number of tasks. The |T |5

term comes from calculating each task’s p-value pVt taking |T |3 time [35], performed

up to |T | times, for each of the tasks, giving |T |3 · |T | · |T | = |T |5. This algorithm is

also very communication intensive, which often poses a problem in real-world robotic

systems. This procedure, however, takes advantage of the distributed system, making

each agent an expert in the coalitions it can possibly become a member of. Nothing

is said explicitly by the authors about transferable utility (which is irrelevant to this

approach) nor superadditivity, which is not applied. No stability concept is applied,

with the exception of a formed consensus on the coalition formed by the algorithm.

Given the nature of the algorithm and the constraints it places on the agents when

forming a coalition structure, none need be applied. In other work [36], they present

a variation that makes use of the Kernel stability concept. The primary difference

between that and the algorithm presented here is that the agents check whether their

calculations provide Kernel-stable coalitions and incorporates side payments to adjust

the stability of potential coalitions.

Fanelli et al. [19] present a coalition formation decision process based on an

ontology. The ontology they use breaks the robotic system into physical entities,

functionalities, and interactions with other robots. The abilities of each robot in

the multiple robot system (MRS) are inferred by examining each of these aspects.

The functionality description is broken into actuation and sensorial capabilities. The
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coalition formation mechanism evaluates links between motor schemas (as defined

in [33]) as potential solutions. The procedure consists of two phases: an offline phase

and an online phase. The offline phase connects robots of different types, defined by

their sensorimotor capabilities through the ontology, and obtains the new capabilities

of the proposed team. If at least one robot in the proposed team improves its ability

to perform a task, the team is defined as a useful coalition. This procedure continues

until all coalitions with no more members than a predefined limit are found. These

results are used as inputs to the online portion of the procedure. The online phase

applies a partial order to the tasks and determines a coalition utility. The coalition

utility is defined as the mean of the utilities of the robots assigned to it. Robot i’s

utility Ui is determined using

Ui = w ∗
∑Qi

j=1 qi,j

Qi

− (1− w) ∗
∑Ci

j=1 ci,j

Ci

where w is a weighting factor relating quality factors (qi,j ∈ Qi) to costs (ci,j ∈ Ci),

based on functionalities. The algorithm iterates through robots, selecting available

mates that can help it accomplish the current mission. It scans only the set of useful

coalitions determined by the offline phase of the procedure. This is guaranteed opti-

mal if there is a total order within competing missions. The guarantee of optimality

is useful, especially since the total online processing is much reduced by comparison

to the procedure presented by Shehory and Krauss. There are, however, a number

of problems with this approach. First, the offline processing assumes three things:

centralized processing, full knowledge of the capabilities of all other robots, and that

these capabilities of robots do not change. If a robot happens to obtain a new capa-

bility (e.g., a new learned behavior), the offline process is invalidated. Additionally,

if full knowledge of the capabilities of other robots is not present, the offline process

is more likely to be invalidated by belief revision. Second, the algorithm makes use

of all three potential sources of uncertainty. The robot capabilities are used to de-

termine robot utilities, which are used to determine coalition utility. Uncertainty in
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any one of the three sources could easily undermine the quality of the calculation and

the ensuing coalitions that are formed. This approach, though effective with no un-

certainty, is ineffective if uncertainty is incorporated. A more decentralized approach

would contribute to more robustness in the face of uncertainty.

Abdallah and Lesser [1] make use of a Q-learning approach applied to a neural

network as a means to prune a search tree. Their formal problem representation

defines T = 〈T1, T2, ..., Tq〉 as the sequence of tasks arriving in an episode. An episode

defined as a time segment where agents receive task sequences and are assigned to

tasks. Each task Ti is defined as a tuple 〈ui, rri,1, rri,2, ..., rri,m〉 where ui is the utility

gained if task Ti is accomplished (the reward) and rri,k is the amount of resource

k required by the agents to complete the task. Each agent Ii ∈ I = {I1, I2, ..., In}
controls some amount cri,k of resource k. Each agent Ii is therefore defined as the

tuple 〈cri,1, cri,2, ..., cri,m〉. The coalition formation problem is then defined as finding

a subset of tasks S ⊆ T that maximizes utility. Mathematically,

∑

i|Ti∈S

ui ≥
∑

i|Ti∈S

uk ∀k 6= i. (2.1)

Let C = {C1, C2, ..., C|S|} be defined as a set of coalitions. The relationship in Equa-

tion 2.1 holds when there exists C where Ci ⊆ I is the coalition assigned to task Ti

such that

∀Ti ∈ S, ∀k :
∑
Ij∈Ci

crj,k ≥ rri,k and ∀i 6= j : Ci ∩ Cj = ∅.

In other words, each task has at least enough resources allocated to it that it can be

completed, and the coalitions are disjoint (no agent is a member of multiple coalitions).

Note that the coalition formation problem defined here makes no effort to minimize

resource waste, which occurs if
∑

Ij∈Ci
crj,k > rri,k.

The approach to coalition formation that Abdallah and Lesser present applies

a hierarchy to the agents in the collective. This makes each agent into a local expert

regarding its sub-hierarchy, in that they know the resources that are available to every
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agent it manages. A task can be discovered by any agent, which queries the resources

in its local hierarchy and, if the task can be accomplished, selects the best child in

the hierarchy to execute the task. If the resources are not available, the task moves

up to the next higher level in the hierarchy and the manager at that level selects

the best child. A child can be either an individual agent or a lower-level manager,

which itself has multiple children. This hierarchy provides a centralization of the

coalition formation process and allows for coalition “templates”, since the formed

coalitions are subsets of the organizations in the hierarchy. The learning is applied

to the order in which the queries are made to the children, streamlining the task

assignment over time. The result is an approach to coalition formation that scales well

and outperforms a traditional greedy selection approach. However, the organization

must be hand-coded, preventing dynamic reconfigurability. The approach is also

somewhat centralized, since failed tasks travel upwards in the hierarchy to the topmost

organization manager. Finally, the knowledge possessed by the managers must include

the resources available to every member of its organization (agent type) and reason

about its contribution (agent utility) to determine a coalition that fulfills a total

utility (coalition utility). This, therefore, requires full knowledge of all three sources

of uncertainty. Incorporation of uncertainty into this approach would affect the entire

collective adversely. The formal definition of the problem space that they present does

allow for other approaches, and many algorithms would fit well into this framework.

2.5 Multi-robot Task Allocation

There is difficulty associated with transferring the DAI approaches into multi-

robot systems, as the multi-robot systems are subject to real world constraints [41].

There are many approaches to multi-robot task allocation, including ALLIANCE

[33], ASyMTRe-D [39], MURDOCH [20], Dynamic Role Assignment [10], Broadcast

of Local Eligibility [43], and First-price auctions [46]. These systems all make an as-

sumption that each task can be completed by a single robot, or the number of robots

for a task required is known a priori.
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ALLIANCE [33] uses impatience and acquiescence to define a robot allocation

to a task in a decentralized manner. The tasks are assigned to the entire collective,

and one robot is selected to execute it. If it fails to execute the task in a certain time,

another robot becomes impatient and attempts to take over. If the original robot is

sufficiently acquiescent, it allows the new robot to attempt the task. This provides

the ability for dynamic allocation of robots to a task, but each task is inherently a

single robot task. In essence, ALLIANCE allows robots to decide among themselves

which robot attempts a task. No provisions are made for multi-robot tasks (those

tasks which require multiple robots to execute), though it is a straightforward variant

to limit the acquiescence of an executing robot yet allow a new robot to join. The

biggest limitation of ALLIANCE is that there is no self-regulation which prevents

allocation of the entire collective to a task. The collective can then be stuck trying to

execute an impossible task. Preallocating multiple robots to an inherently multirobot

task, as in coalition formation, constrains the extent to which the robots dedicate

resources to an impossible task.

ASyMTRe-D [39] uses a distributed version of the “schema” abstraction [3] to

generate coalitions. The approach applies a distributed negotiation process based on

the Contract Net Protocol [37]. ASyMTRe-D creates motor schemas and defines them

as resources available to other robots. This allows the robots to solve for the resources

required for a task and gather those resources. This naturally creates a coalition for

the task’s execution. Provided each robot in the collective understands the schemas

available and the contributions of those schemas for task execution, the robots can

build successful and robust coalitions. However, ASyMTRe-D is built assuming that

no new robot types join the collective, and those in the collective understand a priori

how to represent and use every schema required for a task. ASyMTRe-D does allow

robots to join or leave the collective frequently, but any robots joining must be well

understood (i.e., the schemas are available to every other robot and every other robot

understands the information needed to activate the schemas) ahead of time. This
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prior knowledge about other robots precludes ASyMTRe-D’s applicability to more

dynamic collectives.

MURDOCH [20] allocates tasks to robots with a first-price auction method

[31]. It announces a task with defined metrics, then the robots issue bids. The task

issuer (auctioneer) awards the task to the highest bid then monitors task completion.

This requires that the tasks are inherently single robot tasks, assigned to a collective

of multiple robots. Under this method, only one robot is assigned to a task and

no provisions are made to allow multiple assignment. This approach is limited to

tasks that require a single robot unless a multirobot task is explicitly decomposed

into distinct single-robot roles. This requires extensive knowledge on behalf of the

auctioneer to decompose the task to single robot roles. Without significant user

intervention, this requires a static collective.

Dynamic Role Assignment [10] provides a method for task execution where the

robots can dynamically change roles. The roles are defined ahead of time, but the

robots assigned to each role may change dynamically. This enables a multi-robot

collective to readjust the allocation of tasks during execution, making for a more

efficient execution. One drawback of this system is that the roles must be defined

by a user. Thus, each task has a representation that describes the specific steps and

roles to fill for successful execution. This approach is not well suited to an automated

role generation, since the robots would require full knowledge of the other robots in

the collective to determine the plan and the roles. Furthermore, the task is already

allocated when Dynamic Role Assignment takes over, so coalition formation and task

allocation discussions are impertinent.

Broadcast of Local Eligibility [43] uses the behavior-based architecture paradigm

[9] in a multi-robot setting to allocate tasks to the collective. It allows identical robots

with identical behaviors (called peer behaviors) the ability to cross-inhibit each other.

The robot assigned to the task is the most eligible robot for that task. A notable

drawback of this representation includes the underlying constraint that the robots are
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identical. One way to reduce this constraint is to allow heterogeneous hardware with

identical behaviors, but the issue then is in matching the functionality, parameters,

and feedback such that the behavior output is identical. Another issue is that the

tasks are inherently single robot tasks, assigned to a collective of multiple robots. Each

task assigned to the collective is executed by a single robot, and the only contributors

to comparative eligibility (quality for task execution) are physical location in the

environment and current tasking.

The focus of auction methods is to address efficiency and optimality [17,20,21]

in multirobot task allocation. They operate by allowing robots to bid on a task,

and, much like an auction, awarding the highest bidder with the task. They operate

well in the face of uncertainty, but make a number of assumptions which limit their

applicability. First, they assume that the robots are generally not selfish. Since

there are times when a robot must be selfish (for example, when a robot’s battery

charge level is critically low), this assumption does not hold for all cases. Secondly,

the existence of an auctioneer centralizes the approaches. The centralization can be

mitigated by allowing any robot to become an auctioneer, but the centralization is

present for each task nevertheless. The third, and most critical, assumption that

auction methods make is that the number of robots required for a task are known a

priori. In circumstances where the procedural aspects of tasks are not well defined,

this assumption may prevent successful execution. For example, a task requiring

box pushing (such as in [42]) may assume one agent is required. When that agent

is incapable of pushing the box alone, the task must be reassigned appropriately.

Therefore, though the utility generation and evaluation aspects of the procedure to

be presented in Chapter III are similar to aspects of auction methods, the procedure

followed uses agent preferences instead of a predefined coalition size for determining

the size of the optimal coalition.
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2.6 POMDPs

Some approaches to planning under uncertainty have been through extension

of Partially Observable Markov Decision Processes (POMDPs) [28]. The POMDP of

agent i is defined as

POMDPi = 〈S, Ai, Ti, Ωi, Oi, Ri〉

where:

• S is a finite set of states for the environment

• Ai is a set of actions for agent i

• Ti is a set that defines the probabilities of arriving in certain states if agent i

takes action a at another state

• Ωi is agent i’s observation

• Oi is agent i’s observation function: it defines probabilities of observations given

an action

• Ri is agent i’s reward function, representing i’s preferences

This considers only a single agent. The extensions expand this representation to

multiple agents. The first extension is the Decentralized POMDP (DEC-POMDP)

[6]. The DEC-POMDP is defined similarly to the POMDP, except the transition

probabilities (Ti), observation (Oi), observation function (Ωi), and reward function

(Ri) become dependent upon the joint actions 〈a1, a2, ..., an〉. The DEC-POMDP

adds the benefit of multiple agents, but assumes that all agents are fully cooperative.

That is, they have a common reward function and form a team. In fully cooperative

domains, the best team to form is always the grand coalition, which is impractical for

the application under consideration here.

Another POMDP variant is the Interactive POMDP (I-POMDP) [24]. This

framework represents the state as a set of interactive states which are dependent

upon an agent’s internal model of the other agents. These models represent the
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full type of an agent, including belief states and optimality criteria. The beliefs

of agents are potentially infinitely nested: an agent’s beliefs about another agent’s

beliefs may include beliefs about the first agent, etc. This variant is applicable to

coalition formation for real world applications, with one significant exception. The

already time consuming approaches to coalition formation must be injected into the

I-POMDP representation, and the processing over the interactive states and beliefs

inherent in the I-POMDP must also be performed. This provides a model that, while

applicable, is more cumbersome than necessary for coalition formation applications.

The models of agents in an I-POMDP are also significantly more complex than in the

framework presented in Chapter III, making even more work for each agent whenever

an update occurs.

2.7 Summary

The game theory approaches to coalition formation presented in Section 2.1 use

rational behavior to define stability in coalitions. These approaches rarely translate

seamlessly to the real world. For example, the example of the core stability concept

indicated that, rationally, all producers of A take all the profit, and all producers of B

take none of it. In the real world, very few producers would join a coalition without

some personal profit. These concepts do, however, provide solid rational allocation

schemes and stability approaches and are applicable to many systems nonetheless.

Section 2.2 presents approaches that handle uncertainty and a discussion of the

uncertainty sources themselves. When an agent’s motivations, hardware construction

and configuration, and general capabilities are uncertain, agent type uncertainty is

present. One approach that directly addressed agent type uncertainty incorporates a

modified core, called the Bayesian core, presented by Chalkiadakis and Boutilier [11].

Agent cost (or agent utility) uncertainty occurs when the expense of executing a task–

recorded by energy consumption, communication channel use, or computation time–is

uncertain. This was addressed in an indirect manner by Kargin [29]. The third source

of uncertainty is coalition value. In environments where NTU is present, the value

36



of the coalition can be affected by inaccurate state representations. Blankenburg et

al. [7] address this source of uncertainty. Section 2.2.4 completes the discussion of the

uncertainty sources by addressing the relationship between the three sources.

Due to the importance of NTU to the domain in which the proposed solution

is applied, it is addressed directly in Section 2.3. Aumann [5] presented a proof that

there are many parallels between TU and NTU systems, and the stability may be

evaluated in a similar manner. This leads to an evaluation of the DAI side of coali-

tion formation, which is concerned with the mechanisms applied to form coalitions.

This is presented in Section 2.4. The approaches presented in that section do not

incorporate uncertainty, but serve instead to indicate the breadth of approaches that

can lead to coalitions. The formalization of the problems and the domains are widely

different from one approach to another. The disparate representations reflect very

little continuity and consensus in the DAI aspects of coalition formation. Section 2.5

provides the multi-robot task allocation perspective. These approaches apply various

tools to assign a set number of robots to a task. Since this number is not always avail-

able a priori, the applicability is limited to static collectives. Section 2.6 discusses

the POMDP and variants as a modeling technique but the multiagent applicability of

the POMDP is limited. An alternate POMDP called the I-POMDP is applicable to

multiagent systems and applicable to coalition formation, however, due to the com-

plexity of the model and long processing times, is unnecessarily cumbersome. The

applicability is not diminished, however the practicality of applying I-POMDPs is

limited due to these issues. Chapter III presents a formalization of the coalition for-

mation decision process that is more widely applicable. Additionally, an approach

is proposed that addresses uncertainty in all three sources directly. An algorithm is

developed that allows for this uncertainty.
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III. Methodology

Uncertainty is not well addressed in current coalition formation approaches. The

approaches that do address uncertainty handle it in such a limited manner as to

make the mechanism cumbersome, rather than flexible and more generally applicable.

This precludes application to heterogeneous, decentralized systems of autonomous

mobile robots. This chapter refines the Coalition Formation Decision Process (CFDP)

model to incorporate a procedure designed for heterogeneous and general collectives

through a representation which includes provisions for uncertainty.

The uncertainty is incorporated into the agent model where each of the three

sources of uncertainty (agent type, agent cost, and coalition value) are addressed.

The procedure incorporates the expectations associated with the uncertainties and

performs processing on these expectations to generate stable coalitions that hold with

the strict Bayesian core [14]1. The ensuing coalitions are robust, and a member of a

coalition can multitask by joining multiple coalitions, since a coalition only addresses

a single task. The manner in which the other agents are modeled has a significant

effect on the potential coalitions, and the mechanism allows for an agent-specific, not

system wide, configuration. Improved values in the state vector and covariance matrix

that represents the relationship between agents are achieved by repeated interaction of

agents in coalitions and the formation processes. The formal representation presented

in Section 3.1 is structured to enable the incorporation of uncertainty. The solution

in Section 3.6 uses this representation to form robust coalitions.

3.1 The Coalition Formation Decision Process

Let N = {1, 2, 3..., n} be the set of agents in a collective. The set of all possible

coalitions is Ω (this includes the empty set, so Ω is the powerset of N , and its size

g = 2n). The coalition structure, CS ⊆ Ω, is the set of all coalitions formed. The mth

coalition that can be formed in this collective is Sm ⊆ N . Intuitively, S1∪S2∪...∪Sg =

1The two key differences between the strict Bayesian core and our variant on the core are that
we allow agents to leave a coalition as desired, and there is no transferable utility. Otherwise, the
coalitions that form do hold with the strict Bayesian core.
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N . This framework relaxes the single coalition limitation on an agent imposed by

much of the previous work. An agent can join multiple coalitions at once, so it is not

necessarily true that Sm ∩ Sµ = ∅ ∀m 6= µ. The tasks assigned the collective are

T = {T1, T2, ..., Tp}, where p is the total number of tasks. Each coalition Sm ∈ CS

has an associated task Te ∈ T . Note that m = e or m 6= e is irrelevant, since the

sequencing of the coalitions in S and the tasks in T are arbitrary. Each task Te may

have a sequence of subtasks, defined as 〈t1,e, t2,e, ..., tr,e〉, where r is the index of the

last subtask in the task sequence. Each task also has a payoff Ue. The task cost Ce is

equal to the coalition cost xSm
Te

, which is one source of uncertainty. Thus, a task Te is

a tuple, 〈Ue, t1,e, t2,e, ..., tr,e〉. The cost for the task is not included in the tuple since

the cost is dependent upon the coalition assigned to the task.

The CFDP is defined through a tuple. Formally, an agent is represented by the

tuple 〈N, T, Vi,Mi, Q
i
t, C

i
t〉 where:

• N is the set of all agents, thus (CS ⊆ Ω), where S ∈ Ω

• T is the set of tasks where t1, t2, ...tp ∈ T

• Mi is agent i’s set of models regarding the other agents’ abilities

• Qi
t is the quality value for task T for agent i. This is how “good” agent i

determines itself to be at task T on (0,1].

• Ci
t is the set of costs for task T that agent i expects for the other agents

• V i
t (S, t,Mi, C

i
t) is the utility for agent i for task t given Ci

t , Q
i
t, and Mi

The optimal coalition for task t is the coalition S ⊆ N that maximizes U i
t ∀i ∈ S,

and, for all coalitions that match this requirement,
∑

i∈S U i
t ≥

∑
i∈R U i

t for R 6= S.

In other words, no agent i in S can reasonably expect to form a coalition for task t

where U i
t is greater than U i

t in S, and the total profit is higher for S than for any

other coalition. A specific agent in S may not receive its maximum possible payoff,

but the payoff is the maximum achievable payoff since the other agents in the coalition

providing its maximum payoff may not desire to form it. S is not necessarily unique.
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Also, the tasks are solved for individually and each task has a single coalition, so this

representation is greedy in terms of assigning coalitions to tasks.

The representation of the CFDP as a tuple reflects the four parameters that

affect the coalition formation: The task, an agent’s models, an agent’s quality, and

an agent’s cost. The effects of these parameters are partially investigated in Chapter

IV.

3.2 Agent Model

The stability approach for this work, a variant of the core [23], is defined as the

set of coalitions where no agent can improve its payoff. More specifically, the applied

version of the core is a slightly modified strict Bayesian core [14]. The strict Bayesian

core applies to collectives where all the agents believe they cannot obtain a better

payoff by joining another coalition. The strict Bayesian core requires knowledge of

agent payoffs for each potential coalition. The agent payoff is needed so that each

agent can reason about the other agents and determine whether a given coalition

structure is in the core. The agent type is necessary to calculate the total agent cost

in a coalition, which, in turn, dictates this agent’s payoff.

The agent model is the main component allowing for uncertainty. It also enables

a fully decentralized system to handle arbitrary agent addition or removal. Define

agent i’s “type” as Ai = 〈ai
1, a

i
2, a

i
3, ..., a

i
f〉, where each ai

τ is an ability. This collection

of abilities (each composed of ability type, quality, and standard deviation) which

describe an agent’s estimates about another agent’s task execution quality is called

an ability set. Capturing an agent’s type in this way allows other agents to represent

an agent by what it can do, not what it is. This provides greater flexibility, since

the representation of what a robot “is” may be difficult or impossible for another

robot to capture appropriately. Robots can represent their own abilities internally,

and it is this internal representation that another robot’s type is translated to. More

specifically, Ai as presented above is the true robot type, represented internally by
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robot i. Another robot j characterizing h abilities represents i as

Aj
i = {aij

1 , aij
2 , aij

3 , ..., aij
h }.

Through this characterization, each robot models the other robot types with these

ability sets, which enables transforming another robot’s type into its own, well un-

derstood space. An aspect of this representation is that the set of abilities robot j

uses to define i might not accurately represent i, but the evaluation of the abilities

can yield outcomes similar or identical to a perfect model of robot i. In other words,

the models can be similar or identical in result without being similar in composition.

Define the quality of an ability aij
τ as qij

τ ∈ (0, 1]. The quality values are used

to determine a robot’s estimate of how good another robot is at a task. To make this

determination and enable modification of the values, these qualities are arranged to

define a vector state for a modified Kalman filter:

x̂ij =




qij
t1

qij
t2

qij
t3

...

qij
th




(3.1)

The standard deviations for each ability, σaij
1
, ..., σaij

h
, are used (in part) to define

a covariance matrix P ij
h×h. To define this, the relationship between the abilities are

assumed known (i.e., each robot understands how changes in one of its own ability

qualities affects other abilities). Each agent captures all of the agents in the collective

in this way, including itself (except the covariance is an h×h matrix of 0’s for itself).

This makes the reasoning about potential coalitions more straightforward. As an

agent negotiates tasks in coalitions, updates on the quality and covariance values are

performed through the modified Kalman filter.

41



3.2.1 Kalman Filter Representation. A modified Kalman filter is used for

the evaluation, estimation, and update of the ability values. The values improve over

time with Kalman filters, thus making for a better estimate of other robots’ abilities

and improved coalitions formed from the estimates. The updates for agent type oc-

curs at two times during task execution: at the beginning of the coalition formation

procedure and after task completion. The update performed at the beginning of the

procedure is based upon quality values, which all agents broadcast at the beginning

of the negotiation. Immediately after receiving another agent’s quality, each agent

determines the ability sets it expects the other agents to use for the task under con-

sideration. These abilities are used to generate an expected quality, and the residual

is used to generate an update. When an agent broadcasts its own quality, the other

agents reconcile this value with the quality they expect. At the end of task execution,

the agents determine the cost each agent truly incurred and use this cost to infer

quality, again reconciling this value with the quality they expected. As with a general

Kalman filter, our modification has two stages: propagation and update.

The update stage incorporates measurements, which in this case are the qualities

provided by the other agents. The update step for a general Kalman filter is

x̂ij
k+1− = Fijx̂ij

k+ + Bijuij
k + Gijwij

k . (3.2)

Where x̂ij
k+1− is the state at time k + 1, before the update at time k + 1. The state at

time k, after update is x̂ij
k+ . The input at time k is uij

k , and wij
k is the noise at time

k. The state transition model is the matrix Fij, Bij is the control input matrix, and

Gij is the noise model.

The covariance in a Kalman filter is updated in a similar manner, using

Pij
k+1− = FijPij

k+(Fij)T + Qij
k (3.3)
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where Pij
k+1− is the covariance at time k + 1 before update (and is positive, semi-

definite), Pij
k+ is the covariance at time k after update (also positive, semi-definite),

and Qij
k is the covariance of wij

k . Since the ability qualities have no true dynamics and

there is no reason to expect drift during the propagation stage, let uij
k = 0, wij

k = 0

F ij = In×n, and the process noise is nonexistent (Gij = 0). Therefore Qij
k = 0. In

other words, the propagation stage merely passes the previous value, so the state and

covariance propagation steps from Equations 3.2 and 3.3 become

x̂ij
k+1− = x̂ij

k+ (3.4)

and

Pij
k+1− = Pij

k+ (3.5)

respectively. This means that the propagation from post update at time k to pre-

update at time k + 1 is a simple carryover of the value.

The update step requires the definition of an observation model and the mea-

surement noise. When a task is provided, the agents determine an ability set

{aij
T,1, a

ij
T,2, a

ij
T,3, ..., a

ij
T,γ} = Aj

i (T ) ⊆ Aj
i

that represents the abilities that j expects i to use to execute task T . This is translated

to an observation model Hij
1×h, where the indices of each Aj

i (T ) are marked with 1
γ

and the others marked with 0. These values in Hij define how much insight an agent

has regarding the contributions of each ability to the observation. For example, if

h = 3 and the first and third abilities are in Aj
i (T ), then Hij =

[
0.5 0 0.5

]
.

Since the abilities an agent can represent do not necessarily reflect the true

abilities, there is measurement noise inherent in the system. The measurement zk is

zij
k = Hijx̂ij

k + vij
k

43



where vij
k is the measurement noise. Since the agents receive measurements as com-

municated messages from other agents, the measurement zij
k is the quality received

from the other agents, which occurs at the beginning of the algorithm. The scalar zij
k

is such that Hij projects the h× 1 state into the scalar measurement space.

The filter’s update is performed by determining the residual

yij
k = zij

k −Hijx̂ij
k−

and the residual covariance

Mij
k = HijPij

k−(Hij)T + Rij
k

where R is the covariance of vk. The measurement noise vk is assumed zero mean

white Gaussian noise. Its variance is user-defined, and the variance is the value for

R. The Kalman gain is determined using

Kij
k = Pij

k−(Hij)T (Mij
k )−1

where M is invertible. This gain is applied to the residual and the previous state to

determine the post-update state using

x̂ij
k+ = x̂ij

k− + Kij
k ỹij

k .

Finally, the post-update covariance is determined using

Pij
k+ = (I −Kij

k Hij)Pij
k− . (3.6)

This cycle is repeated each time the agents begin negotiation on a task to improve

the estimates of the ability qualities over time.
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This model and filter combination provide the system with the ability to handle

dynamic addition or removal of robots from the collective. When a robot is added,

a new model (the entire Kalman filter construction) is built and initialized, with

the ability set and the covariance matrix constructed by each agent already in the

collective to model this agent. The abilities to be used for a task are generated by

the modeling agent’s control architecture’s internal planner and these abilities are

considered “observable”. Over repeated negotiations for the same task, a robot’s

model is modified to more closely match the value which another robot sent for its

quality. If an agent expects that previously unused abilities will be used for a given

task, the internal structure of the filter enables adjustment of the previously unused

abilities and fine-tuning of the abilities which had been used before. In this way, a

robot’s internal representation of another robot can converge and generate the same

result as a perfect model, without being of the same composition. In other words,

this approach allows a robot to generate an accurate quality for another robot while

having an inaccurate model.

The quality values provide little insight into the internal structure and valuation

for the agents’ true abilities. However, the residuals between the provided utility and

the expected utility do provide some insight. If the residual is small, the adjustment

from the previous estimates for the expected abilities to the new estimates is small.

Another factor that affects the rate at which the models are adjusted is the covariance

matrix. When the covariance matrix contains small values, the values adjust little,

regardless of the residual value. Over time, the covariance matrix values also diminish,

so repeated encounters of tasks using the same ability increases the agent’s estimate

of the ability’s accuracy.

In summary, the agent modeling technique allows great flexibility in the collec-

tive, requiring only that an agent initialize a new ability set vector whenever a new

agent is added to the collective. The subset of the abilities used for a task are solved

for using an internal planner built into the agent’s control architecture. This planner

may be static or integrated in such a way as to generate ability sets for a task. The
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abilities selected for the execution of the task determine the positions of the nonzero

values in the H measurement model, and the number of abilities in the subset dictate

the values in those positions. The user-defined values of intial covariances on abilities

and R determine how quickly an agent’s model converges onto a given quality value

and how resistant it is to changing the quality values, since the covariances and R

define post-measurement covariances.

3.3 Agent Cost

Agent cost is the resource expenditure an agent experiences while executing a

task. Two agents of different hardware construction following the exact same path

may incur different costs. The task type helps to refine estimated resource expense,

but is not guaranteed to improve the estimate. The agent type Ai dictates the agent’s

ability to perform a task, though not the cost it encounters for the task execution.

The agent cost is a function that determines the estimate based on the task,

the agent’s state model, and the agent type ci = f(Te, Sm, Ai). For example, consider

a task where a single agent is required to move to a specific position. If this position

is accessible through a straight line, the resource expense is readily inferred using the

vector length as a basis. If the position is behind a wall or otherwise obstructed, the

path to the position is necessarily longer than the direct vector’s length, increasing

the cost. However, assuming the domain is fairly well known–paths to target positions

can be developed a priori, etc.–a resource expenditure estimate provides a reasonable

basis for calculation of total cost. Given a poorly defined environment, these estimates

are the best information available to an agent for its representation and processing.

The cost ci is determined by breaking down Te into its sequence of steps,

〈t1,e, t2,e, ..., tr,e〉 and determining the costs associated with each step. This is de-

termined from an agent’s subjective understanding of the environment and estimates

of its resource expense related to a task. This gives an estimated cost for each sub-

task, 〈c(t1,e), c(t2,e), ..., c(tr,e)〉. Since a plan with abilities needed for each subtask is
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available from the internal planner, the cost cj
i is determined using

cj
i =

1

γ

∑
tb,e∈Te

c(tb,e)

qij
1

+
c(tb,e)

qij
2

+ ... +
c(tb,e)

qij
γ

. (3.7)

Equation 3.7 indicates that each ability scales the estimated cost for the task, gener-

ating an ability-centric cost. The ability-centric costs are added to each other for each

subtask, creating a subtask cost. These subtask costs are scaled by the number of

abilities to avoid penalizing agents with more abilities. The subtask costs are summed

to create a total cost, cj
i , or the total cost that agent j expects agent i to incur. With

this relationship, the abilities with lower qualities needed to execute a task increase

cost more significantly than abilities with higher qualities (note that the abilities are

scaled to between 0 and 1). The cost estimates can be learned over time if the domain

is not well known, or generated ahead of time if it is well known. In general, it is

assumed that the domain is not well known and the costs are learned over time.

3.4 Coalition Cost

The coalition cost should be minimized in order to maximize net payoff, which

is distributed to the players. This minimization allows for agents to determine their

best coalition, where their net payoff as a part of the whole is as high as possible,

according to their estimates. The coalition with the highest net profit is the optimal

coalition, as defined for this application. The estimates improve over time with a

Kalman filter update, where the task cost cj
i and the estimates of the types of other

agents Aj
i are adjusted based upon proposed coalitions and true execution costs.

The interconnectedness between the three sources of uncertainty is important,

since it captures the coalition’s capabilities and costs appropriately. The coalition

cost Cj
Sm

for coalition Sm is the sum of the agent costs in the coalition, which is based
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upon the agent types:

Cj
Sm

=
∑
i∈Sm

cj
i =

∑
i∈Sm

1

γ

∑
tb,e∈Te

c(tb,e)

qij
1

+
c(tb,e)

qij
2

+ ... +
c(tb,e)

qij
γ

. (3.8)

This cost is applied to the coalition formation algorithm for generation of a profit

vector Dj
S = {dj

1, d
j
2, ..., d

j
η} of a given coalition Sm where

dj
i = (UT − Cj

Sm
) ·

1− cj
i

Cj
Sm

|S| − 1
,

which is the estimated profit for agent i ∈ S according to agent j. The sum of the

profit vector in relationship to the payoff of the task is the coalition value. The coali-

tion value is not calculated explicitly, as it is implied through this relationship. The

coalition value is based entirely on agent cost, which itself depends on the environment

and agent types. The agents improve the quality of their agent type representation

using a variant of a Kalman Filter (Section 3.2.1). This allows each agent to represent

the other agents in their own reference frame.

3.5 Model Relationship Discussion

Distinctly different models do not affect the number of communication messages.

For example, one agent may propose a coalition with profit vector outside the tolerance

range of one of the potential members. Since this coalition is proposed, it is naturally

within the tolerance range of the proposer. An agent whose acceptable range is outside

of this tolerance declines the coalition since the tolerance ranges are so different. This

causes an agent to potentially pass on coalitions where it has been offered more profit.

In these cases, the disagreeing agent expects that it would not contribute as much to

the coalition as the proposer agent expects and therefore, by declining the proposal,

avoids some of the issues that may occur during execution associated with model

differences. Over time, these agents may have a convergence in their models which

allows them to propose acceptable coalitions to each other. Additionally, an agent
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may end up losing out on a portion of the profit or gaining more profit if it does not

have the lowest timestamp. Each message (or group of messages, in a broadcast) is

sent with a specific timestamp. In race conditions, interference, or any other sort

of communication-based impasse, the lowest timestamp is the winner. Proposals of

the same coalition are given to the agent who has assigned the lowest timestamp

to their message, regardless of whether this proposal is within the tolerance range

of the potential members. If they are within tolerances of the coalition members,

each member accepts the distribution as proposed, even if it means an increased or

decreased profit for a non-proposer, relative to its own model. Therefore, the models

must have fairly similar results (but not necessarily structures) to form a coalition,

since any member with distinctly different results from their model disagrees with a

proposal and the coalition does not form. This occasionally prevents the formation

of viable coalitions, especially in the early stages of implementation. Given these,

any model disagreement does not affect communication volume, but it does affect the

results of the communication, such as reaching an agreement to form a coalition. The

procedures followed to form coalitions enforce a degree of model agreement to a point

where the results of reasoning across an agent’s model of another agent must provide

a similar result to the agent’s true model, within the tolerance range for acceptance.

This approach still holds with the strong Bayesian core presented by Chalkiadakis

and Boutilier [14], since each agent takes the best profit according to its estimates.

Part of its estimates in this framework is skepticism about the disparate nature of the

offered coalition and its understanding of an acceptable coalition of identical agent

composition. Though the agent may be told it can receive the best profit in a certain

coalition, its estimates prevent it from joining the coalition as proposed since it does

not expect that the coalition can make good on the offered profit.

A benefit of this representation is that the system is more robust to interference

from a rogue agent. The rogue agent may propose coalitions that offer most of the

profit to the other members in order to skew the formation or force tasks to fail. Agents

which are members of these proposed coalitions will decline the proposals, even if there
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is a significant potential gain. The model agreement enforces the practical view of

things: if something sounds too good to be true, it probably is. Model differences

may prevent formation of a coalition to execute a task, but this implies that the

members of the collective either expect the task is impossible or they do not have

enough information about each other to form reasonable coalitions. The Kalman

filter updates occurring at the beginning of the coalition formation procedure allow

the models to converge over time, so the same task presented multiple times may

eventually become executable.

3.6 Algorithm

One of the challenges faced by the application of coalition formation to complex

domains and robotic systems is the limitations imposed by the control architecture the

systems use. Often, the coalitions are static and their tasks are limited to well-defined

problems. This limits the dynamics of the collective. Certain control architectures are

designed for loosely coupled tasks and, therefore, have more loosely coupled robots,

allowing for greater dynamics in terms of coalition formation. ALLIANCE [33] is one

example. A recently developed control architecture called HAMR [26] maintains loose

coupling for the robots while still allowing tightly coupled tasks. The mechanism that

provides this is based on utility values. Each robot produces an estimate of its quality

for a given task. This estimate is based on the robot’s perfect knowledge of its abilities

and estimates of resource expense. The quality value is broadcast to all members

of the collective so they can individually process the task allocation. A coalition

formation mechanism can take advantage of these quality values to gain insight into

the broadcasting robot’s abilities and form improved coalitions. However, since the

abilities a receiving robot can represent may not be the same as the broadcaster, the

abilities are captured through uncertainty.

The procedure followed to generate proposed coalitions assumes unreliable com-

munications to an extent that the communication messages are received intact, but

may take multiple communication attempts. The coalition formation decision proce-
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dure is broken into two roles: proposer and responder. These roles are concurrently

executed in each agent. The proposer generates coalitions based upon the agent’s sub-

jective view and suggests them to other agents. The responder receives a suggested

coalition and determines the quality of the proposal given the agent’s subjective view

of the potential coalition. Upon receipt of a proposed coalition, the agent no longer

needs to propose that coalition to the other agents, so the responder role reduces the

workload of the proposer. The proposer’s procedure for agent i is shown in Algorithm

1.

Algorithm 1 Proposer(Task T)

1: Determine and broadcast quality and subtask costs
2: Receive quality from other agents. Update Kalman filter and adjust ability quality

values.
3: for each S ⊆ N where i ∈ S do
4: for each agent j do
5: generate required abilities Ai

j

6: end for
7: determine CS =

∑
j∈S ci

j

8: ∀j ∈ S, calculate di
j = (UT − C i

S) ·
1− ci

j

Ci
S

|S|−1
, save as Di

S

9: if di
j : j = i < di

i singleton then
10: break
11: end if
12: for each j 6= i ∈ S do
13: send S, Di

S to j
14: if response = negative then
15: break.
16: end if
17: end for
18: save S in PS (the set of acceptable coalitions)
19: end for
20: while a coalition is not formed and PS 6= ∅ do
21: select from PS the Sm maximizing di

i.
22: issue Sm to its members of Sm for final approval.
23: if approved then
24: announce S to collective and exit.
25: else
26: remove S from PS.
27: end if
28: end while
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Algorithm 2 Responder(message)

1: if message type is final approval with S, Dj
S then

2: if i is a member of an approved coalition W then
3: let dj

i ∈ Dj
S and dl

i ∈ Dl
S

4: if dj
i < dl

i then
5: respond with negative
6: else
7: respond with positive, notify proposer of W
8: end if
9: end if

10: else
11: receive S, Dj

S

12: Generate required abilities set Ai
j∀j ∈ S

13: Generate C i
S =

∑
j∈S ci

j.

14: Determine di
j = (UT − Ci

S) ·
1− ci

j

Ci
S

|S|−1
∀j ∈ S ⇒ Di

S.

15: Evaluate dj
i and di

i: y = |1− di
i

dj
i

|.
16: if y ≤ α then
17: respond with positive
18: else
19: respond with negative
20: end if
21: end if

52



The proposer procedure is three-staged: the first stage calculates the anticipated

benefit of each coalition for this agent. If the coalition is better than the coalition of

just itself (di
i singleton) then in the second stage, all of the agents in the potential

coalition are proposed the coalition with associated profit vector. Once all mutually

acceptable coalitions are produced, in the third stage, the best coalition generated is

sent to the other agents for final approval. If approved, the agents begin execution

on the task with the formed coalition.

The responder handles messages from the proposer. It evaluates the message

type, then proceeds according to the type. If the message type is for final approval,

the responder evaluates the request in terms of any currently approved coalitions. If

it is a proposal, it generates its own expected profit vector P i
S then compares it to the

offered payoff to determine whether the proposal is acceptable. The parameter α is

user defined, and dictates the degree to which the models must agree before accepting

a coalition. A reasonable value is 0.3, which requires that a coalition proposal must

contain a profit for agent i which reflects i’s expected profit within 30%. Smaller

values for α require greater agreement in the models, which exponentially increases

the number of times agents must interact before agreeing to proposals issued by other

agents, all other things being equal.

The procedures presented above do not appear to address total quality directly.

The quality is addressed during the generation of the abilities in the proposer’s pro-

cedure. The value of each ability affects the quality of each agent. This affects the

profit of the coalition, so the quality is captured by the procedure. The procedure

favors smaller coalitions since the payoff is static for the task and the profit is divided

among the performing coalition. This may often lead to singleton coalitions unless

the ability sets are designed appropriately. A behavior may have multiple estimated

costs associated with it, for example, solo cost and group cost. The group cost may

be lower, encouraging formation of non-singleton coalitions. For example, consider a

task for a coalition to explore a space. The potential total cost for the task is some

scaled value of the total area. A singleton coalition takes the entire cost upon itself,
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so its profit is di
i = Ue−CS with CS large and Di

S = di
i. Increasing the coalition to two

identical agents cuts the cost in half for the original agent. Assume full knowledge of

abilities is available. Then without abilities that are affected by being in a coalition,

agents 1 and 2 share the cost so c1 = c2 =
ci
i

2
and CS = 2c1, so di

i = Di
S · 1

2ci
i· 1

ci
i

= Di
S · 1

2
.

However, if the abilities are affected by groups, agents 1 and 2 still share the costs

but let c′1 = c1
4

due to the layout of the space and associated agent costs. Then

CS = c′1 + c′2 = 2c′1 = 2 c1
4

= 1
2
c1. With PS = Ue − CS, PS = Ue − 1

2
c1 whereas in the

singleton coalition, Di
S = Ue− c1. This nets a higher total profit for the coalition and

the individual profit is divided evenly, giving
Di

S

2
to each or di

j =
Ue− 1

2
c1

2
= Ue

2
− c1

4
. If

payoff is 20 and c1 is 16, the payoff of the singleton coalition is 4 whereas the joint

coalition is 10-4 = 6. The profit is increased for both agents by having groups formed

and ability sets that incorporate a lower cost when employed in a group. A system

designer may choose to build a more complex model where an agent’s quality is af-

fected by both the task type and the number of agents in a proposal. This requires

an expansion of the utility value generation and evaluation, but leads to a much more

sophisticated system which could favor coalitions up to a given size or of at least a

given size. The broadcast utility values may then also require adjustment so they are

delivered for a specific coalition size.

Lines 16 to 20 in the responder’s procedure (Algorithm 2) indicates acceptance

of a coalition if the profit is within (α × 100)% of the estimated profit. If the profit

is more than (α× 100)% away from the expected, the proposed coalition is declined.

Since this mechanism is based upon agreement between the models in each agent,

each coalition need only be proposed once. If even one agent declines the issued

proposal, the coalition cannot be formed since the declining agent has a model that

generates profit vectors too dissimilar to the proposer. Additionally, if two agents

simultaneously propose a coalition, the responder can override its proposer. The

priority is based on the agent number: the proposer is set as the lowest agent number

when a responder receives a duplicate proposal. Even if the proposed profit is high,
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this approach enforces a designed-in skepticism, which by nature obeys the rule that

if it sounds too good to be true, it probably is.

3.7 Example

To illustrate the procedure in a more direct sense, consider the following sce-

nario: three agents, each with three abilities, are in a collective tasked to push a box

to a destination with a payoff of 50. Agent 1 has the abilities PUSH, GOTO, and

WANDER, of qualities 0.7, 0.7, 0.9, respectively. Agent 2 has the abilities PUSH,

PRECISION NAV, and SURVEY, of qualities 0.8, 0.8, 0.6, respectively. Agent 3 has

the abilities FLIGHT, SURVEY, and DRAG at qualities 0.8, 0.4, 0.6. Agent 1 ex-

pects a task cost of 10 in a group and 40 alone, based upon its internal state. Agent

1 expects to use PUSH and GOTO. The proposer procedure for agent 1 is:

1. Determine quality: 0.7. Send quality to the other agents.

2. Receive qualities, update models (an example is in Appendix B). Assume the

models end up generating accurate qualities after the update.

3. Generate all possible coalitions involving agent 1, without singletons: 1,2,1,3,1,2,3.

4. for each coalition, calculate the coalition costs: C(1,2) = 26.78, C(1,3) = 28.86,

C(1,2,3) = 41.36.

5. generate profit vectors: 13.34,16.66, 15.26,14.74, 6.01,8.29,5.7.

6. propose coalition 1,3 to agent 3.

7. when agent 3 responds with negative, propose 1,2 to agent 2.

8. agent 2 responds positively. Save 1,2.

9. evaluate coalition 1,2,3. Solo profit is 10, coalition 1,2,3 gives 6.01. Skip propos-

ing of 1,2,3.

10. present agent 2 with 1,2 for final approval. Assume positive response from agent

2.
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11. announce 1,2 to agents 2 and 3.

The other two agents run the same procedure. At the end, they handle deadlocks

by selecting the lowest total cost coalition of any that were announced. This exam-

ple provided a step-by-step walkthrough of a potential scenario. Adjustment of any

parameters: task payoff, cost expectations, or ability qualities might cause a widely

different result since the parameters affect the values of the profit vectors. The pro-

poser handles uncertainty in this example by making assumptions about the quality

of an agent’s model quality and incorporation of noisy state data to determine the

agent cost and coalition cost.

3.8 Notes

The computational complexity is O(n ∗ 2n) per agent(see Appendix A.3). The

quantity of communication messages sent per agent is also O(n ∗ 2n) per agent (see

Appendix A.2). This is not as time consuming nor as processing intensive as those

procedures which generate the entire coalition structure. An example is Shehory

and Krauss [35], which takes O(nn). An in-depth evaluation of the communication

message quantity and processing time are shown in Appendix A.

The algorithm assumes there are no external shared resources. This framework

is designed for task allocation to a subset of agents, and the resources that are allo-

cated are found entirely within the agents. All shared resources are intra-agent, and

are limited to the environmental data and working variables that an agent’s proposer

and responder must access. This data, with the exception of the explicitly trans-

mitted environmental data, proposals, responses, utilities, approval solicitation and

responses, and final announcements, is completely internal to a given agent. Appendix

A also contains a discussion about risks regarding the sharing of this data and how

they are mitigated by this approach.

The tasks are processed individually and sequentially. Each agent may contain

a set of tasks to process, but since it is assumed that every agent knows of each task,
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the task sets are also assumed equal. Once an allocation of a specific task is made, the

execution may begin immediately or be delayed for a time. This allows for another

representation of the abilities sets regarding inactive or busy. Inactive agents may

be more willing to join a coalition for a task than those agents already allocated to

another task. This mechanism is applicable to ensure that every agent is occupied

over a set of tasks, depending upon the severity of the adjustment between inactive

and busy values.

The distributed nature of this approach is built to ensure robustness over the

coalition formation process. A fully centralized or even temporarily centralized coali-

tion formation mechanism built upon the protocol presented here would build a coali-

tion upon the models within only one agent. This would help to create and enforce

optimality based upon the one agent’s expectations. However, if the allocating agent’s

model generates widely different results than the models in other agents, the coali-

tion it defines as optimal is truly suboptimal. The fully distributed approach and

the model convergence aspects of the algorithm ensure that, even if a formed coali-

tion is suboptimal, no one agent is dominating the decision and forcing a suboptimal

coalition onto other agents. This improves the likelihood that the formed coalition is

optimal or at least core-stable.

3.9 Stability

The Bayesian core is applied as the stability model for coalition formation. This

model states that a coalition structure is in the Bayesian core if each agent in the

coalition structure does not expect that it can do better by changing coalitions and

without harming another agent. Initially, each agent is in a singleton coalition: a

coalition of only itself. Each agent i generates the estimated agent costs for a task.

The agents use this information and information about the task to generate every

coalition involving itself. It then computes, for each of the generated coalitions, the

coalition cost and profit distributions. The profit distributed is always a positive

value. It is this profit that each agent seeks to maximize. The agent must also
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consider, however, that it cannot simply force a particular coalition: all agents in

the proposed coalition must agree. That is, each agent in the proposed coalition

must expect a greater profit than it expects to receive in another formable coalition.

Given this profit distribution, the agent sends a proposition to the other members

of a proposed coalition which includes the coalition members and the profit vector.

The other members respond with either an affirmative or negative. If a negative

response is sent, it is an egocentric response that indicates unsatisfactory distribution

to the responder. This reflects a poor estimate of the responder’s abilities as they are

understood by the proposer.

The Bayesian core defined by Chalkiadakis and Boutilier [11] takes a cooperative

view of the formation mechanism in that the agents only form coalitions if the resulting

coalition structure is expected not to harm any agent. The definition of the core in

game theory is less restrictive and is not concerned with harming other agents. The

game theory representation requires that each agent feels it is receiving the best profit

it can achieve. However, an agent cannot force a coalition to form, so the core implies

that all agents in a proposed coalition (not the entire structure) are better off or at

least no worse than in any other coalition. If this is not the case, at least one agent in

a proposed coalition would disagree with the proposal, thereby not forming it. The

assumption used here is egocentric in this manner: the other coalitions don’t matter

as long as the agent under consideration is receiving its best payoff, given the coalition

structure.

Agents do not always form the optimal coalition. If a “very good” agent can

receive a greater profit by working with a poorer quality agent, it prefers the poorer

quality agent for a partner. However, as the profit margin diminishes, agents lean

more towards the optimal coalition, since some profit is preferable to no profit. In

practice, the core-stable solution is always chosen (unless poor models or communi-

cation failures prevent it from forming), since the core-stable coalition is the optimal

coalition under very low profit margins.

58



3.10 Summary

Extending full uncertainty to coalition formation processes involves each agent

performing processing on its internal state, rather than on the true state. If the

agents have perfect knowledge of the state (which includes agent abilities, the en-

vironment, and the coalition structure), it becomes a process that can guarantee

optimality (given the core stability concept). Even without full state knowledge, the

procedure presented in Section 3.6 forms best coalitions based upon the internal state.

The design of the ability representations has significant effect on the coalitions that

are formed and the quality of the coalitions for a task. Repeated interaction of agents

in coalitions and the formation processes improve the models of the agents through

employment of a modified Kalman filter. The ensuing coalitions are robust: once a

best coalition is formed, no better coalition can be found for a task. A member of a

coalition can multitask by joining multiple coalitions through the sequential process-

ing of tasks, since a coalition only addresses a single task and only a single coalition

is assigned to a task. Upon completion (or failure) of the task, the coalition is dis-

banded. Variations on this and other features of the coalition formation procedure

presented here are provided in the next chapter, which discusses implementation and

experimental setup to test the mechanism.
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IV. Software Agent Implementation

The formulation presented previously is applied as a solver in multiagent teams.

Results from a specially developed simulation show the scalability of the mech-

anism and its handling of uncertainty. This simulation is used as a source for analysis

and evaluation of the mechanism related to model convergence rates and the effects

of agent quantity on the runtime and number of messages sent.

4.1 Description

A simulation was developed with a number of heterogeneous agents that must

move an item. It is assumed that there are no subtasks. The ability types are

FLIGHT, OBSTACLE AVOID, GOTO XY, PUSH, LIFT, MOVE ITEM, ALL STOP,

PRECISION NAV, VISION, RGB VISION, GRAY VISION, and RANGE. Each agent

has a subset of these types, with both solo and group qualities, and the group ex-

ecution quality is sent at the beginning of the CFDP. The agents are broken into

three types. The quality is determined from the values for each ability type within an

agent, i.e. two agents of identical type have identical quality for group execution in

this simulation. Each agent type possesses at least one ability that the other agents

do not. The full configuration of each agent type is shown in Tables 4.1, 4.2, and 4.3

for agents of type 1, 2, and 3, respectively. Defined through the tuple from Chapter

III, the CFDP is:

• N : the set of agents in the collective. N = 1, 2, ..., n, n ∈ {6, 7, 8, 9, 10, 11, 12}.

• T : the task MOVE ITEM.

• Mi: the set of abilities and values agent i uses to represent the other agents.

• Qi
t: 0.91667, 0.88333, and 0.7833 for agents of type 1, 2, and 3, respectively.

• Ci
t : constant for this testing. Set to 1.0.

• V i
t (S, t,Mi, C

i
t): Solved for by the proposer and responder. Used as the measure

of a coalition’s quality.
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Table 4.1: The configuration for agents of type 1.

Agent Type Solo/Group Ability Type Quality

1

Solo

ALL STOP 0.6
GOTO XY 0.2

LIFT 0.8
MOVE ITEM 1.0

OBSTACLE AVOID 0.2
RANGE 0.3

RGB VISION 0.04

Group

ALL STOP 1.0
GOTO XY 0.8

LIFT 1.0
MOVE ITEM 1.0

OBSTACLE AVOID 0.9
RANGE 0.8

RGB VISION 1.0

The set of tests performed here investigates the effects of Mi on the coalition forma-

tion.

Agents of type 2 and 3 tend to propose coalitions, whereas agents of type 1 tend

to decline coalitions since their profit is not increased by joining a group. The effects

of different quantities of each agent type and the quality of each agent’s internal model

of the other agents are investigated. The factors of interest are the computation time

and the number of communication messages sent. The simulation is designed such

that communication does occasionally fail and multiple agents may issue proposals to

each other at the same time.

The ability types that are used to execute the move item task include OB-

STACLE AVOID, GOTO XY, PUSH, ALL STOP, RANGE, LIFT, FLIGHT, and

MOVE ITEM. Each agent contains a subset of these abilities, so their contributions

are based upon their subset.

The testing is broken into two parts: perfect models and imperfect models. The

simulation has no true environment, so each agent assumes a constant cost of 1.0 for

tasks. The effects of varying the quantity and type of agents on the computation
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Table 4.2: The configuration for agents of type 2.

Agent Type Solo/Group Ability Type Quality

2

Solo

ALL STOP 0.1
GOTO XY 0.1

PUSH 0.1
MOVE ITEM 0.1

OBSTACLE AVOID 0.1
RANGE 0.1

RGB VISION 0.1
PRECISION NAV 0.1

Group

ALL STOP 1
GOTO XY 0.8

PUSH 1.0
MOVE ITEM 0.8

OBSTACLE AVOID 0.9
RANGE 0.8

RGB VISION 1.0
PRECISION NAV 1

Table 4.3: The configuration for agents of type 3.

Agent Type Solo/Group Ability Type Quality

3

Solo

ALL STOP 0.04
MOVE ITEM 0.04
GOTO XY 0.08
FLIGHT 0.1

OBSTACLE AVOID 0.09
RANGE 0.06

GRAY VISION 0.07
PRECISION NAV 0.07

Group

ALL STOP 0.8
MOVE ITEM 0.6
GOTO XY 0.6
FLIGHT 0.9

OBSTACLE AVOID 0.9
RANGE 0.9

GRAY VISION 0.9
PRECISION NAV 1.0
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time and communication message quantity are tracked in the perfect model testing.

The imperfect model testing evaluates convergence rates: the quantity of repeated

evaluations of a task needed for the models to converge sufficiently to form coalitions.

4.1.1 Perfect Model Testing. With perfect models, the agents can evaluate

and propose potential coalitions to any other agent, confident that the other agents

will accept if the other agents cannot receive a better payoff alone. The ability types

and values are perfectly captured, so agents of any type know that agent 1 is of type 1

and uses the abilities OBSTACLE AVOID, GOTO XY, ALL STOP, RANGE, LIFT,

and MOVE ITEM for the task. The other agents also know the quality of each of

these abilities for group execution. They do not, however, know how these qualities

compare to the solo execution qualities.

The effects of a specific type of agent on the message quantity and processing

time may be significant, depending upon the types of the other agents in the collective.

For example, a 12 member collective composed solely of agents of type 1 on a standard

task completes rapidly since no agents issue proposals. However, changing this setup

to a 12 member collective containing 4 agents of type 1 takes an average of 4,821

seconds to complete. The configurations selected for testing contain a split between

the agent types in order to examine the worst case scenario for processing time. The

quantity of each agent type for each run is shown in Table 4.4. Each agent has two

values for each ability: solo and group. The solo value gives the quality if an agent

chooses to work alone, and the group value gives the quality if the agent chooses to

work in a group. This approach favors two-member coalitions, though it does not

prevent three or four member coalitions in the case of poor models or communication

failures.

Fig. 4.1 indicates the time taken for each run. The dots are realized run times

and the line indicates the trend. Note that the plot is semi-logarithmic, reflecting the

2n effects on the growth rate when an agent is added. The runtime effects are not
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Table 4.4: The run numbers with the quantity of each agent type. Each run was
executed 10 times.

Run Type 1 Type 2 Type 3 Total

1 2 2 2 6
2 3 2 2 7
3 2 3 2 7
4 2 2 2 7
5 4 2 2 8
6 2 4 2 8
7 2 2 4 8
8 5 2 2 9
9 2 5 2 9
10 2 2 5 9
11 4 4 4 12

significantly affected by the agent types, though this is due to the mixture of types

in the collective.

4.1.2 Imperfect Model Testing. This test evaluates the number of times a

task has to be re-evaluated before the agents agree to a coalition. The convergence

rate when the models are imperfect depends greatly upon the initial quality of an

agent’s models relative to the true configuration of the other agents. If the models

are of poor quality (as in, the result of inferring a quality from the ability values is

vastly different from the agent’s true quality), the agents may have to process a task

multiple times prior to being able to form a coalition, since their models improve

when the utilities are sent each time a task is presented. Each agent’s unique abilities

are not represented by the agents of any other type. In other words, an agent of type

1 assumes that all other agents use OBSTACLE AVOID, GOTO XY, ALL STOP,

RANGE, LIFT, and MOVE ITEM for the task, even if the other agents do not

possess those skills1. The agents are set to initially assume a quality of the other

agents’ abilities as shown in Table 4.5. Those values are assumed the same for all

1Even if the agent represents another agent with an accurate set of behaviors but with poor
quality estimates, the nature of the experiment is the same. The convergence times are no different
in either case.
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Figure 4.1: Semi-logarithmic plot showing the effect on runtime of adding an agent.
The mean values for each quantity of agents is shown relative to a linear regression
fit. Each agent has perfect models of all other agents.
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Figure 4.2: Semi-logarithmic plot showing the effect on message quantity of adding
agents. A linear regression fit is also shown. The growth rate is governed by 2n,
though these values are about four times higher than the runtime.
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Table 4.5: The assumed initial quality of the other agents for the imperfect model
testing. For each run, each agent makes the assumption that all other agents have
the corresponding initial quality value for all abilities.

Run Number Assumed Ability Qualities

1 0.01
2 0.05
3 0.1
4 0.2
5 0.3
6 0.4
7 0.5
8 0.6
9 0.7
10 0.8
11 0.9
12 1.0

abilities (as in, each aij
τ = 0.01 ∀τ ∀j in the first run). The ability variances are initially

set to 0.5 and the measurement noise variance is set to 0.2. A six-agent collective

with two of each agent type is used. For each run, a task is re-evaluated upwards of

10 times. In real-world scenarios, another opportunity for learning would be through

performing an evaluation of the task after execution is complete, which would cause

the convergence rate to become partially dependent upon the formed coalition. The

models were tested on a number of different configurations. The qualities that the

agent types provide for this task are 0.91667, 0.88333, and 0.7833 for types 1, 2, and

3, respectively. These qualities are used to generate residuals, which in turn reflects

a model accuracy. For example, run number 11 in Table 4.5 has residuals of 0.01667,

0.01667, and 0.11667 whereas run number 1 has residuals of 0.90667, 0.87333, and

0.7733 for the first exposure to the task. Since the residuals are the only external

source of insight into the model quality, run 11 has more accurate models than run

number 1.

Since agents only agree to form coalitions if their internal model agrees (within

30%) with the issued proposal, the number of task re-evaluations it takes before agree-
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ing on a coalition may be long. Fig. 4.3 shows the number of re-evaluations of a task

required to generate coalitions. Once the models generate qualities within 0.1 of the

true qualities, a coalition is formed. The 30% threshold parameter (α = 0.3) defines

this requirement. The initial models that generate more accurate results converge

faster (runs 9-12 formed coalitions in the first evaluation), but even very poor initial

models generate acceptable coalitions after a few iterations. More complex domains

with widely varying task types may cause the convergence to take more iterations,

but convergence occurs regardless of initial model quality. Other parameters, such

as the noise variance and the ability variances affect convergence rates, yet also af-

fect the degree of confidence. In other words, increasing the initial variance for the

abilities provides faster convergence in the state vector, yet slower convergence in

the covariance matrix. Increasing the value for the measurement noise also provides

faster convergence in the state vector yet establishes a higher “lower limit” to the

covariance. These effects are investigated in Appendix B.
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Figure 4.3: The convergence rates of the models seeded at different initial ability
qualities.

4.2 Summary

This chapter presents information on the scalability and convergence of the

approach. The runtime scales proportional to the number of agents performing the
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negotiation. The actual runtime is highly dependent on the processor in the computer

system: the testing for this chapter was performed on a single core mobile processor

running at 1.58 GHz. Later testing was performed on a quad-core processor running

at 2.1 GHz. The runtime in the latter case was approximately 1
6

of the runtime from

the former. The convergence results demonstrate the customizability of the approach

on a per-agent basis. A system designer could create an agent whose initial models are

very poor, and the nature of the agent model update technique establishes a means to

gradually improve these poor models. In practice, it is rare to require renegotiation

on a task more than four times before an agent is willing to join most of the proposed

coalitions. The analysis provided in this chapter defines runtime and convergence, but

does not comment on the optimality of the formed coalitions. Optimality is addressed

in Chapter V. Chapter VI describes the implementation of the stochastic model and

algorithm on real-world robotic systems.
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V. Comparison

The biggest strength of the combination of the stochastic model and coalition

formation algorithm is the ability to form coalitions under uncertainty. The

uncertainty in agent type that the presented approach can handle is significant, per-

mitting incorporation and assimilation of previously unknown agent types without

reprogramming any of the original agents in the collective. To evaluate the uncer-

tainty handling in a quantitative manner, the approach is tested against the approach

from Chalkiadakis and Boutilier [11], which is also designed to handle uncertainty.

5.1 Setup

The algorithm as presented in Chapter III was applied to a simulated environ-

ment as defined by [11] and tested against their approach. The environment consists

of 5 agents, each having a specific type: 0, 1, 2, 3, and 4 with quality values of -1,

1, 2, 3, and 4, respectively. The re-scaled variant of this to fit the framework of the

algorithm from this paper defines the quality values at 0.5, 0.6, 0.7, 0.8, and 0.9,

respectively. Communications may fail randomly, and failed communications may

prevent a coalition from forming. The levels of uncertainty in agent type are changed

in each test, and the total number of times per run the optimal or core-stable coalition

is formed is tracked. The optimal coalition is defined as the most profitable coalition

overall, i.e., the coalition involving only the two best agents. The core-stable coali-

tion is the most profitable for the best agent in the collective. These agents form a

coalition to execute a medium-sized project, where the payoff is set at 40. The test

is run 30 times, with 100 iterations each time. The evaluation is broken into three

overall tests:

1. No uncertainty in agent type, agent cost, or coalition cost.

2. Uncertainty in agent type, but all agent types come from a known set.

3. Uncertainty in agent type, and at least one agent type falls outside a known set.
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Two additional agents are added for test three, agents 5 and 6. In tests one

and two, the optimal coalition is with agents 4 and 3, and the core-stable coalition

contains agents 4 and 1. For test three, the optimal coalition is with agents 6 and 4,

with the core-stable containing agents 6 and 1.

5.2 Results

For the first test, Chalkiadakis’ approach converged to either the optimal coali-

tion or the core-stable coalition 22/30 times (due to communication failure and the

constraints introduced by the random selection of the single proposer). The mean

number of times per run that Chalkiadakis’ approach formed either of these coali-

tions is 64.1, with a standard deviation of 37.5. The algorithm presented here formed

it a mean of 83.0 times, with a standard deviation of 5.3, where each failure is due

to communication failure. The implications of these results are the improved consis-

tency of the algorithm presented here over Chalkiadakis’ approach. Figure 5.1 shows

a comparison of the two. The approach presented by Chalkiadakis either converged

successfully or failed to entirely. There is no moderation in the results, and the polar-

ity of the plot showing the results of applying Chalkiadakis’ approach indicates this.

The algorithm presented here has more consistent results, indicated by the much

smaller standard deviation.

In the second test, uncertainty in agent type is introduced. The agents have

initially uniform knowledge of the types of other agents, and the types are all taken

from a set of known possibilities for Chalkiadakis’ algorithm. Chalkiadakis’ algorithm

converged to the optimal or core-stable coalition a mean of 57.8 times with a standard

deviation of 32.9. The algorithm presented here has initial assumptions of 0.5 for all

behavior quality values, 0.5 for standard deviations on the behavior qualities, 0.3

for the threshold (α) values, and 0.3 for the measurement noise (v). This algorithm

formed either the optimal or core-stable coalition a mean of 84.4 times, with a standard

deviation of 4.3. These results compare favorably with the results of the first test.

The advantage comes with the short term required to make the models agree. The
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Figure 5.1: A comparison of the two algorithms under full knowledge of all agent
types.

model agreement is finalized in no more than five iterations, so agents are forming

coalitions and improving the quality of these coalitions for only a short time. After

the first five iterations per run, the algorithm continues as if it is in the same situation

as the full knowledge test. The random communication failures were more significant

in the first test, so the results for both test one and test two are very similar. Figure

5.2 shows the difference in the uniformity of the results from each algorithm.

In test three, uncertainty is increased further. Two agents are added (agents 5

and 6), each with a type that falls outside the known set. Each new agent can represent

itself and the previous set accurately, but not the other new agent. The pre-existing

five agents can only represent the known set (the other preexisting agents) accurately.

The new agents have quality values of -2 and 6 for the representation in Chalkiadakis’

algorithm, and 0.4 and 1.0 for the representation in the algorithm from this paper.

Chalkiadakis’ algorithm converged to either the optimal or the core-stable coalition a

mean of 36.8 times with a standard deviation of 34.9. The algorithm presented here
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Figure 5.2: A comparison of the two algorithms with uncertainty in agent types.

formed it a mean of 82.8 times with a standard deviation of 8.4. This test shows the

strength of the algorithm. The new agent types have not previously been encountered

by the other agents, yet the new agents are fully assimilated in five or fewer iterations.

A comparison of the results of the algorithms is presented in Figure 5.3.

5.3 Summary

The results of tests 1, 2, and 3 indicate that the algorithm and stochastic model

presented here not only allows for uncertainty on a larger scale, but also performs

more consistently even in the face of a small amount of uncertainty. The open-ended

representation allows agents of arbitrary types to be added to an agent collective and,

provided all agents are running the same framework, provides rapid assimilation and

minimizes downtime. This is uniquely suited to collectives with high turnover, i.e.,

new agent types are introduced fairly often. The ability to handle these arbitrary

agent types and yet perform well when all details about the other agents are known
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Figure 5.3: A comparison of the two algorithms with two unknown agent types.

improves the strength and flexibility of task allocation. Even in the face of failed com-

munication, unknown agent types, and distinctly poor initial models, the approach

operates well and improves over time. This chapter indicates the effects of moving

from full knowledge of other agent types through uncertain agent types to completely

unknown agent types. The operation is consistent, having a normal distribution and

managing at least 80% formation rate regardless of the level of uncertainty. This

indicates the strength of the approach despite significant agent type uncertainty.
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VI. Robotic Implementation

The application of the model and algorithm to real-world robot systems demon-

strates its flexibility. Since robotic collectives may be composed of a wide va-

riety of robots (e.g., humanoid and other bipedal robots, skid-steer style robots, and

quadripedal robots), the ability to generalize an approach to handle random robot

types is important. The model and algorithm application to a real world robotic

collective help expand the potential ubiquity of coalition formation applied to robotic

collectives, since it is more generally applicable under the representation in this disser-

tation. This chapter provides a description of the deployment, including testing that

demonstrates the ability to add an arbitrary robot type to a preexisting collective. The

algorithm is applied to four robots: three Pioneer P2-ATs and one Lego Mindstorms

NXT, shown in Figure 6.1 executing the MOVE ITEM task. The Pioneer robots use

the HAMR control architecture [26], which is built on top of Player/Stage [22]. The

NXT is programmed using LeJOS with the Unified Behavior Framework [45] and a

simple, static planner. The robots allocate three tasks which would be typical of

a search-and-retrieve activity. These tasks include the exploration of an area, the

locating of an item, and the movement of the item to a goal position. These tasks

are broken into three task types in the deployment: MOVE ITEM, FIND ITEM, and

EXPLORE. For MOVE ITEM, robots push the item to the goal position. Better exe-

cution of this task is dependent upon a robot’s torque and the nature of its front (i.e.,

whether a bumper or gripper is present). This task is tightly coupled in its execution.

The FIND ITEM task requires robots to locate a red cylinder in the environment.

This task is dependent upon robot speed and sensor ability, requiring a color cam-

era. The EXPLORE task requires robots to explore the environment. This requires

velocity control and obstacle detection. The FIND ITEM and EXPLORE tasks are

loosely coupled in their execution. Including both tightly and loosely coupled tasks

demonstrates the flexibility of the allocation method.
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Figure 6.1: The robotic collective executing the MOVE ITEM task. The two robots
in the foreground are Frodo and Gandalf, the robots in the background are Gollum
and the NXT.

6.1 Robots

The NXT is a skid-steer treaded robot with two Mindstorms sonar sensors. It

cannot detect color, nor does it have enough torque to push an item. The NXT has

five behaviors: obstacle avoid, wander, push, view, and GoToXY. Each behavior is

an ability in the coalition formation algorithm. A combination of these abilities are

selected depending on the task the robots are negotiating on, and it assumes that the

other robots each have the same five abilities. This set of five abilities is approximately

20% of the size of the ability sets on the three Pioneer 2ATs: Gandalf, Frodo, and

Gollum. Gandalf has a color camera with blobfinder, a 180◦ LiDAR, 16 sonar sensors,

a flat-front bumper, and 25 behaviors. Frodo has a vision-aided navigation system,

180◦ LiDAR, 16 sonar sensors, a flat-front bumper, and 36 behaviors. Gollum has

a color camera with blobfinder, 180◦ LiDAR (not used), 16 sonar sensors, a 2-DOF

gripper, and 43 behaviors. This varying hardware affects the quality of each robot

for the tasks as described above. The quality values for these robots for each task

type are shown in Table 6.1. Each of the robots represent the others in their own
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Table 6.1: Robot Quality Values and Thresholds

Task Type Gandalf Frodo Gollum NXT

MOVE ITEM 0.9 0.692 0.6 0.27

EXPLORE 0.72 0.73 0.6 0.7

FIND ITEM 0.9 0.578 0.9 0.275

Threshold (α) 0.4 0.2 0.3 0.5

context: Frodo assumes all of the other robots have vision-aided navigation systems,

180◦ LiDARs, 16 sonar sensors, and flat-front bumper like itself. All of the robots use

their own version of this representation, and there are abilities associated with their

representation that other robots do not possess. For example, Gollum has the ability

to individually move a small and light item, but it has no ability to use its laser to

navigate around obstacles. HAMR receives the allocation and manages the execution

of tasks for the Pioneer robots, and the static planner manages the execution of tasks

for the NXT.

6.2 Experimental setup

Initially, only Frodo, Gandalf, and NXT are available for tasking and negotiate

five times each on the three tasks. Iterations 1-5 are on the MOVE ITEM task,

where each robot evaluates the task and sends the appropriate quality value. After

the fifth iteration, the task changes to the EXPLORE task (iteration 5-10), and the

quality values sent out are based on the new task. The last five iterations are on the

FIND ITEM task. The environment the robots act in is a hallway two meters wide.

This hallway follows a rectangular path of 50 by 30 meters. All robots have the same

position origin in two-dimensional space. The environment is not static: the internal

environment maps are removed from each robot before each task negotiation, and

there is no control over the location, volume, or movement speed of pedestrians in the

environment. To show the ability to randomly add a robot to the collective, Gollum is

introduced after this 15-negotiation indoctrination period and the four robots proceed
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with nine more negotiations. Iterations 1-3 are for the MOVE ITEM task, 4-6 are on

the EXPLORE task, and 7-9 are on the FIND ITEM task. The robots execute the

task after each iteration if a coalition is formed.

The optimal coalitions (the coalitions with lowest total cost) for each task are

with Gandalf and Frodo for the MOVE ITEM task, Gandalf and Gollum for the

FIND ITEM task, and Gandalf and Frodo for the EXPLORE task. The core-stable

coalitions (the coalitions with the most profit available for its members) are with Gan-

dalf and Gollum for the MOVE ITEM task, Gandolf and Gollum for the FIND ITEM

task (since both the NXT and Frodo are very poor at the task), and Frodo and Gol-

lum for the EXPLORE task. The robots form the core-stable coalition only if the

profit margin is sufficient to justify it. The optimal coalition has a lower overall cost,

but due to the nature of the core stability concept, the robots prefer increased profit.

6.3 Results

The threshold values (α) defined in Table 6.1 are each robot’s tolerance for coali-

tions that don’t match their internal stochastic models. Since the NXT’s threshold

value is 0.5, it has a high tolerance and is generally optimistic, i.e., it has a greater

faith in the quality of the models that the other robots are working from. Frodo,

on the other hand, is pessimistic, holding a higher trust in its own models. These

differences shape the trend for the first few negotiations on the tasks, with Frodo

declining every proposal (that it does not issue) for the first two negotiations and the

NXT accepting every proposal for all of the negotiations. The robots tend to prefer

to form the core-stable coalition for execution of a given task. Table 6.2 indicates the

core-stable and optimal coalitions for each task type.

The changes in the residuals over the first 15 negotiations are shown in Figures

6.2, 6.3, and 6.4 for Gandalf, Frodo, and the NXT robot, respectively. The plots

reflect the robot’s expected quality and the actual communicated quality for each

model. The first through fifth iterations are for the MOVE ITEM. Due to the model’s

representation and operation, residuals diminish as the task is revisited. At the sixth
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Table 6.2: Core-stable and optimal coalitions for each task type

Task Type core-stable optimal

Before addition of Gollum

MOVE ITEM
Gandalf

Frodo

Gandalf

Frodo

EXPLORE
Frodo

NXT

Frodo

Gandalf

FIND ITEM
Gandalf

NXT

Gandalf

NXT

After addition of Gollum

MOVE ITEM
Gandalf

Gollum

Gandalf

Frodo

EXPLORE
Frodo

Gollum

Frodo

Gandalf

FIND ITEM
Gandalf

Gollum

Gandalf

Gollum

iteration, the task changes, defining new residuals. These values change based on the

task under consideration and the expected use of the abilities.

When Gollum is added to the collective, the other robots have well-established

models of each other, so the residuals indicated by Figures 6.5, 6.6, and 6.7 change

little by comparison, with the exception of the models for Gollum. The NXT robot is

working from a small ability set, containing only 5 types of abilities. Frodo, Gandalf,

and Gollum are working off ability sets between 22 and 30 elements in size, making

their representation much more sophisticated. This expanded sophistication provides

only moderate gain in terms of model accuracy, but allows each robot to maintain a

representation over which it can reason independently of the other robots.
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Figure 6.2: Residuals in Gandalf’s models over the 15 negotiations prior to the
addition of Gollum.
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Figure 6.3: Residuals in Frodo’s models over the 15 negotiations prior to the addi-
tion of Gollum.

Gollum’s model residuals over nine negotiations after being added to the collec-

tive are shown in Figure 2.12. The residuals at the end of the nine negotiations reflect

a similar end point as those of Frodo, Gandalf, and the NXT robot while having less

time to fully indoctrinate.
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Figure 6.4: Residuals in the NXT robot’s models over the 15 negotiations prior to
the addition of Gollum.
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Figure 6.5: Gandalf’s residuals over the 9 negotiations after the addition of Gollum.

In each iteration, every robot negotiated, proposing coalitions and expected

payoffs to potential coalition members. Due to the threshold settings (shown in

Table 6.1), some proposals were declined and others were accepted. The NXT robot

accepted every coalition proposed to it unless it was offered a payoff of 0. Table

6.3 shows the coalitions formed with each iteration. When Gollum is added to the
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Figure 6.6: Frodo’s residuals over the 9 negotiations after the addition of Gollum.
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Figure 6.7: The NXT robot’s residuals over the 9 negotiations after the addition of
Gollum.

coalition, the core-stable coalitions for FIND ITEM changes. In fact, the core-stable

coalition and the optimal coalition are identical with the full 4-member collective for

the FIND ITEM task. This coalition is not formed until the third negotiation on the

FIND ITEM task, however, since the models of Gandalf and Gollum do not agree

sufficiently for Gollum to accept Gandalf’s proposals until then. Some iterations in
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Figure 6.8: Gollum’s residuals over 9 negotiations after added to the collective.

Table 6.3 show that no coalition was formed. This failure is due to communication

failure or an underdeveloped model (e.g., Gandalf issued a proposal that was too

far from Frodo’s expectations), not uncommon in real-world robotic systems. The

robots attempt to re-send a proposal up to 10 times to encourage a response from

their targeted coalition members. Occasionally, when the models disagree to a certain

extent and communications fail extensively, no coalition is formed. Iterations 3, 11

and 13 without Gollum and iterations 7 and 8 with Gollum fail to form coalitions.

This is caused by two things: 1) the qualities of the robots that Gandalf has available

to work with before Gollum is added are very poor, and 2) Gollum refuses Gandalf’s

proposals until the third iteration on the FIND ITEM task (ninth iteration overall).

6.4 Summary

This chapter demonstrates the application of the model and algorithm to a robot

collective. The strengths of the approach are indicated by the ability of the robots to

form the core-stable coalitions despite the fully decentralized nature of the algorithm.

It also demonstrates the ability to add a new robot type to a preexisting collective and

adjust the task allocation appropriately. Before fully assimilated, Gollum does not
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form coalitions. This is due to the disagreement of the models and the threshold (α)

values. Once the models agree, Gollum agrees to proposals from the other robots (and,

accordingly, the other robots agree to Gollum’s proposals) and the new core-stable

coalition is formed. The model allows this rapid assimilation and the flexibility to

create and work with general collectives, regardless of hardware or past interactions.

As a task allocation method, this approach is more robust and more flexible than

many other approaches.
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Table 6.3: Coalitions formed for each iteration

Iteration Coalition Formed
Estimated Actual

Payoff Payoff

1 NONE N/A N/A

2 NXT/Gandalf 1.30, 31.83 5.48, 27.74

3 NONE N/A N/A

4 NXT/Gandalf 1.46, 31.64 5.48, 27.74

5 NXT/Gandalf 2.14, 30.82 5.48, 27.74

6 Gandalf/Frodo 19.48, 17.43 20.76, 15.84

7 Gandalf/Frodo 20.04, 16.78 20.76, 15.84

8 NONE N/A N/A

9 Gandalf/Frodo 21.03, 15.55 20.76, 15.84

10 Gandalf/Frodo 20.86, 15.69 20.76, 15.84

11 NONE N/A N/A

12 NXT/Gandalf 8.76, 27.33 7.23, 29.20

13 NONE N/A N/A

14 NXT/Gandalf 7.74, 28.10 7.23, 29.20

15 Gandalf/Frodo 22.83, 14.37 25.36, 12.65

After Adding Gollum

1 Gandalf/Gollum 19.33, 17.0 23.39, 13.57

2 Gandalf/Gollum 20.49, 16.01 23.39, 13.57

3 Gandalf/Gollum 21.32, 15.29 23.39, 13.57

4 Gandalf/Gollum 19.51, 16.95 20.54, 16.12

5 Gandalf/Frodo 20.70, 15.90 20.76, 15.84

6 Gandalf/Frodo 20.76, 15.84 20.76, 15.84

7 NONE N/A N/A

8 NONE N/A N/A

9 Gandalf/Gollum 17.41, 20.18 18.91, 18.84
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VII. Conclusion

This dissertation presents an improvement to previous approaches to coalition

formation mechanisms with uncertainty. It defines a CFDP that is applicable

to an unstructured environment and extends multi-robot task allocation and dynamic

coalition formation to allow uncertainty and dynamic changes in the collective’s com-

position. The simple yet robust stochastic modeling approach is applied to robotic

and agent collectives to demonstrate similar runtime, expanded applicability, and

better results than other approaches under uncertainty.

This dissertation presents the game theory perspective on coalition formation,

discussing the three main stability concepts. It also discusses the distributed artifi-

cial intelligence approaches, some of which address uncertainty. Unfortunately, even

with handling of uncertainty, the applicability of the coalition formation approaches

to real-world robotic systems is limited. Thus, an investigation of POMDP’s and

multi-robot task allocation methods is provided. Furthermore, an in depth discus-

sion of nontransferable utility is provided, which is a critical assumption made by

many coalition formation approaches yet is invalid for most real-world applications.

Under these constraints, a formalization of the Coalition Formation Decision Process

(CFDP), the stochastic modeling technique, and the algorithm for forming coalitions

are provided. The modeling approach enables application to dynamic coalitions where

each agent performs processing on its belief state and needs not perfectly represent

the other agents. Repeated interaction of agents in coalitions and the formation pro-

cesses improve the beliefs of the agents through employment of a modified Kalman

filter. The ensuing coalitions are robust, and a member of a coalition multitasks by

joining multiple coalitions.

The model and algorithm are applied to an agent simulation and an investigation

on the scalability and convergence of the approach are provided. The runtime scales

proportional to the number of agents performing the negotiation, with an exponential

growth rate. The convergence results demonstrate the customizability of the approach
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on a per-agent basis. It is rare to require renegotiation on a task more than four times

before an agent is willing to join most of the proposed coalitions.

The optimality and general solution quality of the approach are also presented.

These results indicate that the approach allows uncertainty on a larger scale and

performs more consistently even in the face of a small amount of uncertainty. The

open-ended representation allows agents of arbitrary types to be added to an agent

collective and, provided all agents are running the same framework, provides rapid as-

similation and minimizes downtime. The ability to handle these arbitrary agent types

and yet perform well when all details about the other agents are known improves the

strength and flexibility of task allocation. Even in the face of failed communica-

tion, unknown agent types, and distinctly poor initial models, the approach operates

well and improves over time. That chapter indicates the effects of moving from full

knowledge of other agent types through uncertain agent types to completely unknown

agent types. The operation is consistent, having a normal distribution and managing

at least 80% formation rate regardless of the level of uncertainty. This indicates the

strength of the approach despite significant agent type uncertainty. Further results

demonstrate the application of the model and algorithm to a robot collective. It

demonstrates the ability to add a new robot type to a preexisting collective and ad-

just the task allocation appropriately. The model allows this rapid assimilation and

the flexibility to create and work with general collectives. The strength of the model

is demonstrated via the real-world application and the late addition of Gollum to the

collective.

In summary, this dissertation provides a combination of a stochastic modeling

technique and coalition formation algorithm that forms robust and stable coalitions

for task execution. This addresses some issues in many current approaches to coali-

tion formation, namely the lack of provisions for uncertainty. Addressing this enables

application of coalition formation techniques to complex domains, such as real-world

robotic systems. The approach additionally provides ability to handle dynamic ad-

dition or removal of agents from the collective without constraining the environment
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to limit the sources of uncertainty. The agent modeling approach enforces stability,

allows for arbitrary expansion of the collective, and serves as a basis for calculation

of individual coalition payoffs. It explicitly captures uncertainty in agent type and

allows uncertainty in coalition value and agent cost, and no agent in the collective is

required to perfectly know another agents type. The modeling approach is incorpo-

rated into a two part algorithm to generate, evaluate, and join stable coalitions for

task execution. In describing the scalability, the applicability to real-world systems,

and the general strength (via comparison) of the approach, this dissertation shows

that coalition formation is applicable to real-world systems and is effective in the face

of uncertainty.

7.1 Suggestions for Future Work

The expansion of coalition formation to robotic collectives is a difficult problem

to solve, since the robots have to address many real-world constraints that agents do

not. Though this dissertation solves both this problem and the problem of applying

coalition formation to arbitrary collectives, there is much that can be done to expand

the approach.

• Incorporate a direct capturing of agent cost uncertainty. The uncertainty in

agent cost is handled by the current approach, but it is not captured. Explicitly

capturing uncertainty in agent cost would expand the representation to pass un-

certainty through to the coalition value itself. This would enable the generation

of a confidence interval on a coalition. The agents can then make more educated

decisions about potential coalitions, since they can have some confidence about

a minimum payoff.

• Create a robust, generalized approach to task execution with arbitrary agent

types. The allocation method presented here allows for arbitrary agent types,

but the allocation is basically an academic exercise without mechanisms for

executing the task. For the execution in Chapter VI, a task execution approach
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which tracks progress [27] is implemented. This is an approach that applies to

arbitrary agent types, but is not robust nor is it generalized.

• Apply suboptimal algorithms for coalition formation to the stochastic model.

This would speed up allocation of robots to tasks, but some optimality would be

lost. This would make the scalability of the approach much greater, providing

solutions to task allocations in a much shorter time. The suboptimal algorithm

would be well suited to large collectives.

• Expand the representation to include external resources. The only “shared”

resources in the current approach are within an agent, between the Proposer

and Responder. An approach designed to incorporate external resources may

increase the odds of deadlock, but it would make available certain other aspects,

such as movable external sensors, thereby increasing the abilities of a robot

collective.

• Expand the model propagation to incorporate internal dynamics. This allows

agents to incorporate a time-based degradation on the quality of an estimate

of another agent’s type. This expansion would, in essence, allow an agent to

“forget” other agents over time. This could be useful for applications where

certain collective members rarely interact and the abilities or hardware of one

member can change in the time between interactions.

• Apply a different estimation technique for the model update. The straightfor-

ward Kalman filter based approach applied in this dissertation assumes linearity.

Under certain variants of the approach presented here, the linearity assumption

may prove invalid. An extended Kalman filter, an unscented Kalman filter, or a

particle filter may prove a more effective estimation technique for those variants.

• Apply the model aggreement and propagation methodology to a trust-based

agent system. Since trust does not drift, the ability of a trust network to

remain robust over time is very high. However, trust-based systems are not

often capable of catching a corruption immediately after it occurs. With the
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model agreement approach presented in this dissertation, the agent systems

would have an additional tool with which to verify their expectations about

other agents. When another agent changes significantly (becomes corrupted),

it informs the other agents of something different from what the other agents

expect. This enables detection of a corruption as it occurs, and further improves

the robustness of a trust-based agent system.
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Appendix A. Deadlock and Processing Time Evaluation

This appendix provides an in-depth investigation into deadlock. It shows that dead-

lock is not possible under the framework provided in this dissertation by describing all

of the possible sources of deadlock and how the risks are mitigated. Additionally, this

appendix describes the runtime of the framework. It provides worst-case scenarios

and analyzes them, showing that the scalability is at least as good as other “brute

force” algorithms for coalition formation.

Deadlock is a possiblity in every multiagent system unless steps are taken di-

rectly to mitigate the risks. There are five potential sources of a deadlock in the

context of the procedure that has been developed: a process waiting on a process,

which is waiting on another process (process-process); a process waiting on commu-

nication, with the communication waiting on a process (process-communication); a

communication waiting on communication (communication-communication); where

there are multiple winning coalitions for a task (agreement); and when an agent waits

on responses that never come (no response).

A.1 Deadlock Evaluation

For each of the five potential sources of deadlock, the four deadlock conditions

must be met for the system to be in a deadlock. The four conditions are:

1. Mutual exclusion: a resource cannot be used by more than one process at a

time.

2. Hold and wait: processes already holding resources may request new resources.

3. No preemption: No resource can be forcibly removed from a process holding it

and resources can be released only by the explicit action of the process.

4. Circular wait: processes form a circular chain where each process waits for a

resource that the next process in the chain holds.

A.1.1 Process-Process Deadlock. Within an agent, the only two simultane-

ously running processes are the proposer and the responder. In this, the only shared
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data (within an agent) is in whether a coalition is formed, the ability sets for the

agents, and the set of potential coalitions. The ability sets are accessed at one spe-

cific time for each procedure (when the required abilities are being generated), and

no other shared resources are used during this time. Similarly, the set of potential

coalitions are accessed only once for the responder and twice for the proposer, and the

resource is held only long enough to complete the process. No other shared resources

are accessed during this time. Finally, the formation of a coalition follows the same

pattern: no other shared resources are used while the formed coalition is accessed. All

of these resources defeat the hold and wait property of deadlock since each is accessed

independently of the others. Even with scaling to more agents, the processes do not

enter deadlock (though they may be more delayed).

A.1.2 Process-Communication Deadlock. The only time an agent waits on

a communication before continuing processing is when it proposes a coalition. The

proposer, however, can be preempted by the responder if it receives the same coalition

proposal from another agent. The responder operates as usual, but with the data

saved already the proposer, so it reduces the responder’s workload. If approved, the

proposed coalition is saved in the list of possible coalitions that the proposer makes

use of later. The proposer ceases its wait and continues with the next coalition.

The worst case of this is when every agent proposes a coalition at the same time.

However, since every communication message is sent with a timestamp, the proposer

whose broadcast was sent with the smallest value for the timestamp takes priority

and maintains the proposer role. If timestamps are equal, the proposer role is given

to the agent with a lower number designation (i.e. agent 1 assumes the proposer role

if agent 2 also proposes the coalition with the same timestamp). Thus, no matter the

role, the formation request is not deadlocked. With the preemption and the nature

of the formation request format, there is no possibility for process-communication

deadlock.
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A.1.3 Communication-Communication Deadlock. There is no time where

communication is waiting on communication, since communication only waits on a

process or vice versa. The closest situation to when a communication is waiting

on a communication is in the Process-Deadlock scenario described previously. A

communication-communication deadlock is not possible given this framework.

A.1.4 Agreement Deadlock. An agreement deadlock assigns multiple coali-

tions to a specific task. The coalitions for a given task are disjoint: no member of

one of the coalitions is in any of the other coalitions. To ensure that the tasks are

only assigned to a single coalition, winning coalitions announce their formation to all

the other agents. The proposer makes the announcement, and the proposer with the

most profitable coalition is the proposer whose coalition is assigned to the task. This

creates a social rule to mitigate the potential agreement deadlock and a priority based

upon internal clock. If two agents tie for the most profitable coalition, preference is

given to the agent with the lowest agent number.

A.1.5 No Response Deadlock. If no response is received when an agent

submits a proposal, there are three possible causes. The first cause is if the agent

that should have received the proposal does not receive it. The second cause is if

the agent on the receiving end malfunctioned. The third cause is if the response is

simply not received by the proposer. From the proposer’s perspective, it is impossible

to discern between these types of failures. Thus, to ensure ample time has been

provided for a response to be received by the proposer, a three second delay is used

between requests. If the response is not received within this time, the request is

resubmitted with the same timestamp used on the original message. If 10 additional

attempts are made without a response, the proposer gives up, removes the proposed

coalition from the list of potential coalitions, and does not add the coalition to the

list of approved coalitions. This prevents a deadlock since the agent has some point

at which it gives up. If the agent does give up, the coalition is removed from only the
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proposer agent. Other agents may propose this coalition at a later time with similar

or different results, depending upon the communication situation at the time.

A.2 Communication Evaluation

The worst case communication scenario at a snapshot of time in a large collective

is when a single agent dissents and responds last to a proposal involving a large

coalition while other large coalitions are proposed. Recall that a single ”no” response

defeats a proposal. Additionally, the “no” response is sent to each agent in a proposed

coalition, so any further “yes” responses need not be sent and are irrelevant. Thus,

the worst case scenario is when the dissenter responds last. A specific instance of this

scenario may be shown with a large number of agents arranged in a circle. Every agent

proposes a coalition involving all the agents except for the agent to the proposer’s

right. Each proposed coalition is unique. The saturation on behalf of the sole dissenter

is most significant if it is the same one and it responds last, with the coalition it

proposes being declined by a single dissenter, also responding last. This is illustrated

in Figures 1.1 through 1.4 with 8 agents. In this representation, n is the number of

the agents in the collective and p is the number of agents in a coalition.

In Figure 1.4, 1 responds negatively to 8 and 8 responds negatively to every

agent. These are broadcast to every potential coalition member, so 8 responds neg-

atively 6 times, broadcasting each time (36 total responses). 1 responds to 8’s pro-

posed coalition once, to each agent (6 times). Note that this system is a snapshot:

the number of proposed coalitions (assuming every coalition is proposed) for the en-

tire time is every coalition but the empty set and the singletons: 2n − 1 − n. These

2n − 1 − n coalitions are proposed once, and responded to p − 1 times for approval

and p− 2 + p− 1 = 2p− 3 times for worst case disapproval, where p is the size of the

coalition.

A.2.1 Communication Message Evaluation: Snapshot. In the eight agent

system shown, each agent sends one proposal with 6 messages (n − 2). Agents 2-7
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Figure 1.1: 8 agents, arranged in a circle.

(n − 2 total agents) respond positively 6 times (n − 2). Agent 1 responds positively

5 times (n − 3) and negatively once, sending 6 messages (n − 2). Agent 8 responds

negatively 6 times (n−2), sending 6 messages each time (n−2), making 36 ((n−2)2)

total messages. In addition, each agent broadcasts its quality to every other agent

before the procedure begins (n(n−1)). The total messages sent during this worst-case

scenario is n− 2 + (n− 2)(n− 2) + n− 3 + n− 2 + (n− 2)2 + n2− n = 3n2− 7n− 6.

Adding another agent to the mix causes this to grow to 3n2 − n − 10. This is a

difference of 6n−4 messages if a new agent is added under the worst case scenario. In

the eight agent system, this is the equivalent of adding 44 communication messages.

In general, the addition of another agent adds 2n−1 more messages for the dissenter,

2n− 1 more for the new agent, and one more for each of the other remaining agents
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Figure 1.2: 8 agents, issuing proposals. Each proposal is sent
to every agent except the agent to the proposer’s right.

(n− 1). The agent which dissents the dissenter’s proposal adds n− 1 more on top of

its one additional message. This snapshot scenario is dominated by n2 for large n.

A.2.2 Communication Message Evaluation: Full-Term. The snapshot worst

case scenario presented previously captures a very short time in the grand scheme of

the coalition formation mechanism, but provides insight into the full-term behavior.

The above scenario is a worst case with a single proposal per agent. However, since

there are
(

n
2

)
coalitions with 2 agents,

(
n
3

)
coalitions with 3 agents, etc., the scale is

more significant. Of these coalitions, each agent has
(

n−1
1

)
coalitions of size 2 that

contain itself,
(

n−1
2

)
coalitions of size 3 that contain itself, etc. A reasonable estimate

is to assume that each agent must propose about
(

n
p

)
/n coalitions for each coalition

of size p, or 2n−1
n

in total. This makes sense intuitively, since it is the total number of
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Figure 1.3: 8 agents, positive responses. Every agent except
agent 8 responds positively, and agent 1 does not respond posi-
tively to agent 8.

nonempty coalitions scaled by the number of agents in the collective. Given this and

the fact that each agent can be in one of 2n−1− 1 possible coalitions, then each agent

must respond to each coalition it does not propose, about 2n−1−1− 2n−1
n

proposals. In

this worst case, each agent must disagree with each coalition it does not propose, and

send each disagreement at the exact same time as all other non-proposer members of

the coalition. This is the same context as the snapshot evaluation, but based upon the

full formation time. Each agent’s negative response is sent to every other member of

the proposed coalition. There are the same number of coalitions of size 2 for each agent

as there are of size n-1: n− 1. The average response quantity is (n−1)+(n−1)(n−1)
2(n−1)

= n
2
.

Thus, since each agent need not send a response to itself, the average response quantity

is n
2
−1. Therefore, each agent must send (2n−1−1− 2n−1

n
)(n

2
−1) total responses. The
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Figure 1.4: 8 agents, negative responses.

total number of messages in this worst case scenario is the sum of the responses and

the proposals: (2n−1− 1− 2n−1
n

)(n
2
− 1) + (2n−1

n
)(n

2
− 1), which is dominated by n ∗ 2n

at large n. With communication failures, the worst case is when each agent re-sends

a proposal 9 times to every agent in its proposed coalition, every agent downstream

receives it and responds, but the communication fails on response. The 10th attempt

is successful. Then the total message quantity is 10 times higher than previously

mentioned, giving (10)((2n−1 − 1− 2n−1
n

)(n
2
− 1) + (2n−1

n
)(n

2
− 1)).

This scenario only considers the negotiation phase: the true communication

quantity includes n − 1 messages each for announcement of qualities, a quantity

of duplicate requests due to communication failure, some messages passed for final

approval, and up to n − 1 messages passed to announce a winning coalition. This

then drives the communication to 2n− 2 more messages than previously mentioned,
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or (10)((2n−1− 1− 2n−1
n

)(n
2
− 1) + (2n−1

n
)(n

2
− 1)) + 2n− 2. This is still dominated by

n ∗ 2n at large n, so the order of the message quantity is unchanged.

A.2.3 Best Case Communication Scenario. If perfect knowledge is available,

each agent can determine, without feedback from other agents, whether a coalition

will be acceptable. The scope of acceptable coalitions may then be much smaller than

the generated coalitions since the agents can filter their results prior to proposing.

Consider a 6 agent system where two agents are poor at a task, two are moderate,

and two are good. The poor agents would not agree to any proposal, so they submit

none. The moderate agents would know that the poor agents would not agree, so they

generate 24−1 − 1 = 7 coalitions each instead of 26−1 − 1 = 31 coalitions. There are a

total of 11 coalitions:
(
4
2

)
+

(
4
3

)
+

(
4
4

)
= 6+4+1 = 11. Each agent is likely to propose

about 3 of their coalitions, all of which are acceptable. with a total of 34 messages

to be sent, each agent should have about 8.5 communications. Rounding up gives 9

communication messages per agent, as opposed to a worst case of (2n−1−1− 2n−1
n

)(n
2
−

1)+(2n−1
n

)(n
2
−1) = (31− 63

6
)(2)+(63

6
)(2) = 62. Both of these values include only the

communications from the evaluation stage. The true communication quantity includes

5 messages each for announcement of qualities, a quantity of duplicate requests due

to communication failure, some messages passed for final approval, and up to n − 1

messages passed to announce a winning coalition. This analysis must be performed on

a case-by-case basis, since the effects of full knowledge cannot be evaluated without

specifics about the number of agents that will disagree with a proposed coalition.

Under the assumption of full state knowledge, however, the number of communication

messages may drop dramatically. If the agents merely have accurate models (and not

full state knowledge), the assumption cannot be used and the filtering of potential

proposals does not occur. If this is the case, the communication is no better nor worse

than any other circumstance without full state knowledge.
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A.3 Processing Evaluation

In the worst case processing scenario, each agent must calculate every possible

coalition that involves itself. There are 2n−1−1 of these coalitions for each agent. The

profit from each coalition is also evaluated relative to the singleton coalition, and the

coalition is discarded if the coalition is less profitable. The worst case is when every

coalition except the grand coalition is saved. Furthermore, each coalition involving

other agents may be proposed by one of these other agents. Each agent will not have

to propose every calculated coalition (since other agents will have duplicates), but

let’s assume, for the worst case, that the coalitions are being proposed at the exact

same time by every agent involved. One proposer is maintained. Thus, each agent

calculates their 2n−1 − 1 coalitions and proposes them all. This requires p(p − 1)

calculations per coalition of size p: once through the coalition to generate the ability

sets (p − 1 time) and once through to generate the profit vector (p time). Assume

each agent retains the proposer role for 2n−1
n

of their proposals. Then the proposer

must sort each of these proposals so it can propose the most profitable coalitions,

taking 2n−1
n

log(2n−1
n

) time. The remaining proposals are handled by the responder

role, which also requires p(p − 1). The overall proposer time is
∑n

p=1

(
n
p

)p(p−1)
n

+

2n−1
n

log(2n−1
n

) = (n − 1)(2n−2) + 2n−1
n

log(2n−1
n

), including sorting. Add to this the

responder role,
∑n

p=1(
(

n−1
p−1

)−(
n
p

)
1
n
)(p(p−1)). This gives 2n−(n+1) for the responder

and (n− 1)(2n−2) + 2n−1
n

log(2n−1
n

) + 2n− (n + 1) overall, which simplifies to 2n−2(n +

3) − n − 1 + 2n−1
n

log(2n−1
n

). This is dominated at high n by n2n−2, which is of the

same scale as the worst case communication scenario.

A.4 Relationship Between Communication and Processing

The worst case communication scenario is dominated by 10n2n, whereas the

worst case processing scenario is dominated by n2n−2 at large n. This means that

roughly 40 times as many communication messages are sent in the worst case than

the number of processes that are executed. The growth rate is the same, as both

are O(n2n). This is highly inefficient in terms of time of processing relative to the
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number of agents, but is similar to optimal coalition formation algorithms. Since the

processing is decentralized, the workload handled by each agent is reduced versus a

single centralized approach, even though duplicate work is being performed. Accord-

ing to Shehory and Krauss [35], finding the optimal coalition structure for a task

takes O(nn). However, since we’re restricting the task to having only one coalition, a

full structure consists of only a single coalition and the processing is reduced. Their

algorithm takes O(nn−1) in computation complexity and O(nn−1) in communications

complexity. The procedure developed here is better than theirs with respect to these,

if only because it is solving for a single coalition instead of the entire structure. More

significantly, the procedure developed here allows for uncertainty, whereas Shehory

and Krauss’ algorithm requires each agent to have full state knowledge.

The relative growth of the processing and communication as the number of

agents increase does not cause one to swamp the other. This allows for consistent, if

slowed, communication and processing growth rates and the odds of having a backlog

that must be cleared in either respect is reduced. The coalition formation process

takes longer with more agents, but this is expected since there are more potential

coalitions.

A.5 Effects of Existing Tasks

The tasks are processed individually and sequentially. If the tasks are indepen-

dent, a coalition is developed for each individually, processed one at a time. If they are

not independent, they are presented as subtasks and a single coalition is developed

that handles every subtask. The task presentation method and evaluation of task

dependence is a decision made by the user. At the lowest level, dependent tasks are

collected into a single task that represent all required aspects. This conglomerated

task is then processed as any independent task would be. The sequential processing

of tasks forces agents to be able to process variations in their taskability whenever

they’re occupied. The agents have a representation of skill qualities for when the

abilities of the agent are occupied with another task. The tasks are described in a
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way that allows the agents to note conflicts to concurrent possible task assignments

and modify their qualities and the expectations of occupied agents appropriately.

With this and the effects of computational load excepted, there are no changes to the

coalition formation aspects when there are existing tasks.
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Appendix B. Kalman Filter Construction

The Kalman filter variant as presented in Chapter III provides the mechanics of the

belief update procedure. This appendix provides a concrete example of its application

for additional reference.

Consider two agents. These agents, agents 1 and 2, are of types 3 and 1 as

they were presented in Chapter III, respectively. The effects of agent 2 modeling

agent 1 are investigated. Agent 1’s abilities and ability values are: ALL STOP:

0.8, MOVE ITEM: 0.6, GOTO XY: 0.6, FLIGHT: 0.9, OBSTACLE AVOID: 0.9,

RANGE: 0.8, GRAY VISION: 0.9, and PRECISION NAV: 1.0. For a task to move

an item, the abilities used are ALL STOP, MOVE ITEM, GOTO XY, FLIGHT, OB-

STACLE AVOID, and RANGE. Assume, for this example, that the agents send the

mean value of the abilities they plan to use for the task. Agent 1 therefore sends a

value of 0.767 for its quality.

Agent 2 has the abilities ALL STOP, GOTO XY, LIFT, MOVE ITEM, OB-

STACLE AVOID, RANGE, and RGB VISION. It assumes Agent 1 has the same set

of abilities. It then expects the use of ALL STOP, GOTO XY, LIFT, MOVE ITEM,

OBSTACLE AVOID, and RANGE to execute the task. Assume the ability qualities

were initialized at 0.5 for all abilities, and all abilities are mutually independent, i.e.,

all nonzero values in the covariance matrix are on the diagonal. Also assume the

initial values for the variance of the ability values are 0.5. The filter values x, P , and

H are then defined as:

x0 =




0.5

0.5

0.5

0.5

0.5

0.5

0.5
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P0 =




0.5 0 0 0 0 0 0

0 0.5 0 0 0 0 0

0 0 0.5 0 0 0 0

0 0 0 0.5 0 0 0

0 0 0 0 0.5 0 0

0 0 0 0 0 0.5 0

0 0 0 0 0 0 0.5




H =
[

1
6

1
6

1
6

1
6

1
6

1
6

0
]

Let x0+ = x0. Then with the dynamics of the system at steady state, x1− = x0+ .

Likewise, P1− = P0+ = P0. The residual

y1 = 0.767−
[

1
6

1
6

1
6

1
6

1
6

1
6

0
]




0.5

0.5

0.5

0.5

0.5

0.5

0.5




= 0.267

Define vk as zero mean white Gaussian nose with variance 0.1. Then the residual

covariance is

S1 =
[

1
6

1
6

1
6

1
6

1
6

1
6

0
]




0.5 0 0 0 0 0 0

0 0.5 0 0 0 0 0

0 0 0.5 0 0 0 0

0 0 0 0.5 0 0 0

0 0 0 0 0.5 0 0

0 0 0 0 0 0.5 0

0 0 0 0 0 0 0.5







1
6

1
6

1
6

1
6

1
6

1
6

0




+0.1 = 0.2833
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with Kalman gain of

K1 =




0.5 0 0 0 0 0 0

0 0.5 0 0 0 0 0

0 0 0.5 0 0 0 0

0 0 0 0.5 0 0 0

0 0 0 0 0.5 0 0

0 0 0 0 0 0.5 0

0 0 0 0 0 0 0.5







1
6

1
6

1
6

1
6

1
6

1
6

0




(
1

.2833

)
=




0.2941

0.2941

0.2941

0.2941

0.2941

0.2941

0




Giving

x1+ =




0.5

0.5

0.5

0.5

0.5

0.5

0.5




+




0.2941

0.2941

0.2941

0.2941

0.2941

0.2941

0




(0.267) =




0.5784

0.5784

0.5784

0.5784

0.5784

0.5784

0.5000




and

P1+ =




I7 −




0.2941

0.2941

0.2941

0.2941

0.2941

0.2941

0




[
1
6

1
6

1
6

1
6

1
6

1
6

0
]







0.5 0 0 0 0 0 0

0 0.5 0 0 0 0 0

0 0 0.5 0 0 0 0

0 0 0 0.5 0 0 0

0 0 0 0 0.5 0 0

0 0 0 0 0 0.5 0

0 0 0 0 0 0 0.5
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=




0.4755 −0.0245 −0.0245 −0.0245 −0.0245 −0.0245 0

−0.0245 0.4755 −0.0245 −0.0245 −0.0245 −0.0245 0

−0.0245 −0.0245 0.4755 −0.0245 −0.0245 −0.0245 0

−0.0245 −0.0245 −0.0245 0.4755 −0.0245 −0.0245 0

−0.0245 −0.0245 −0.0245 −0.0245 0.4755 −0.0245 0

−0.0245 −0.0245 −0.0245 −0.0245 −0.0245 0.4755 0

0 0 0 0 0 0 0.5000




This process is repeated when the next task is evaluated. The trends of the state

vector and the standard deviations are shown in Figures 2.1 and 2.2, respectively.
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Figure 2.1: The convergence of the state vector over reevaluations of the same task.

The values for R and the initial covariances affect convergence rates. Figures

2.3 and 2.4 show the effects of setting R to 0.5. Increasing R makes an agent trust

its currently existing model more, and trust the measurements less. This increases

the time it takes to converge on a value. Setting the initial covariance to 0.8 has a
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Figure 2.2: The standard deviations over reevaluations of the same task.

minor effect on the state, but a significant effect on the final covariance, changing the

steady-state value. This is shown in Figure 2.5.

These results do not consider the effects of different task types. However, those

task type variations are investigated in Chapter VI.

B.1 Robot Ability Qualities

The residuals of the measurements are shown in Chapter VI. This provides

insight into the performance of the robot models over time, but does not actually

provide the internal structure of the models. Those are presented here for clarity.

Figures 2.6 through 2.8 show the models of Gandalf, Frodo, and the NXT before

Gollum is added to the collective. Their models of each other are tracked, and the

quality values of each ability are shown in the figures.

When Gollum is added to the collective, the other robots have well-established

models of each other, so the changes in their models indicated by Figures 2.9, 2.10, and
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Figure 2.3: The convergence of the state vector over reevaluations of the same task.
vk has a covariance of 0.5.
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Figure 2.4: The standard deviations over reevaluations of the same task. vk has a
covariance of 0.5.
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Figure 2.5: The standard deviations over reevaluations of the same task. Initial
covariances are set to 0.8.
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Figure 2.6: Gandalf’s model changes over the 15 negotiations prior to the addition
of Gollum. The branching effect occurs when abilities that were part of a previous
set (used or unused) are applied again.
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Figure 2.7: Frodo’s model changes over the 15 negotiations prior to the addition of
Gollum.
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Figure 2.8: The NXT robot’s model changes over the 15 negotiations prior to the
addition of Gollum.

2.11 change little by comparison, with the exception of the models for Gollum. Figures

2.9, 2.10, and 2.11 also serve to indicate another strength of this representation:

despite the different ability sets that the robots are working from and the different
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Figure 2.9: Gandalf’s model changes over the 9 negotiations after the addition of
Gollum.

assumptions on ability usage on a given task, Gandalf, Frodo, and the NXT robot

all have models that respond in a similar manner to the quality values provided by

Gollum. The NXT robot is working from a small ability set, containing only 5 types

of abilities. Frodo, Gandalf, and Gollum are working off ability sets between 22

and 30 elements in size, making their representation much more sophisticated. This

expanded sophistication provides only moderate gain in terms of model accuracy, but

allows each robot to maintain a representation over which it can reason independently

of the other robots.

Gollum’s model changes over nine negotiations after being added to the collec-

tive are shown in Figure 2.12. The model results at the end of the nine negotiations

reflect a similar end point as the models of Frodo, Gandalf, and the NXT robot while

having less time to fully indoctrinate.

The plots in this section indicate the actual ability qualities, according to the

internal representation of each robot. This is dependent upon the parameters as

presented in Chapter VI, the physical hardware of the robots, the abilities each robot

possesses, and the abilities each robot expects to be used for a task. These plots are

presented to provide insight into the internal mechanism of the model update.
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Figure 2.10: Frodo’s model changes over the 9 negotiations after the addition of
Gollum.
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Figure 2.11: The NXT robot’s model changes over the 9 negotiations after the
addition of Gollum.
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Figure 2.12: Gollum’s model changes over 9 negotiations after added to the collec-
tive.
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